• Title/Summary/Keyword: EPS(expanded polystyrene)

Search Result 84, Processing Time 0.023 seconds

Discrete element numerical simulation of dynamic strength characteristics of expanded polystyrene particles in lightweight soil

  • Wei Zhou;Tian-shun Hou;Yan Yang;Yu-xin Niu;Ya-sheng Luo;Cheng Yang
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.577-595
    • /
    • 2023
  • A dynamic triaxial discrete element numerical model of lightweight soil was established using the discrete element method to study the microscopic mechanism of expanded polystyrene (EPS) particles in the soil under cyclic loading. The microscopic parameters of the discrete element model of the lightweight soil were calibrated depending on the dynamic triaxial test hysteresis curves. Based on the calibration results, the effects of the EPS particles volume ratio and amplitude on the contact force, displacement field, and velocity field of the lightweight soil under different accumulated strains were studied. The results showed that the hysteresis curves of lightweight soil exhibit nonlinearity, hysteresis, and strain accumulation. The strain accumulated in remolded soil is mainly tensile strain, and that in lightweight soil is mainly compressive strain. As the volume ratio of EPS particles increased, the contact force first increased and then decreased, and the displacement and velocity of the particles increased accordingly. With an increase in amplitude, the dynamic stress of the particle system increased, and the accumulation rate of the dynamic strain of the samples also increased. At 5% compressive strain, the contact force of the particles changed significantly and the number of particles deflected in the direction of velocity also increased considerably. These results indicated that the cemented structure of the lightweight soil began to fail at a compressive strain of 5%. Thus, a compressive strain of 5% is more reasonable than the dynamic strength failure standard of lightweight soil.

A Study on the Application of Numerical Model to Predict Behaviour of EPS (EPS 거동 예측 모델의 적용성에 대한 연구)

  • Cheon, Byeong-Sik;Yu, Han-Gyu;Im, Hae-Sik
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.185-198
    • /
    • 1996
  • EPS is increasingly used as a filling material in soft ground. The beneficial effects of the use of EPS derive from minimizing the stress increment, which, in turn, increases the bearing capacity and reduces the settlement. EPS can also be used as a backfill material for retaining walls and abutments to reduce the horizontal earth pressure. However, there is no rational application for the selection of the EPS fill which is essential to the selection of the filling configuration and the settlement calculation. In this paper, therefore, the nonlinear numerical model developed from the results of triaxial compression tests is applied to the construction of EPS and verified through the comparison between the prediction and in-situ measurements.

  • PDF

Experimental Study of Compression Strength Characteristics for Geo-Bottle (Geo-Bottle의 압축강도 특성에 관한 실험적 연구)

  • Lee, Seung-Eun;Chang, Yong-Chai;Bowders, John.J;Park, Jong-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2010
  • Use of disuse resources like PET (polyethylene terephthalate) bottle as construction materials will make environment-friendly approach to more efficient recycling of resources. In this study, to utilize PET bottle as substitute by EPS (expanded polystyrene) block, uni-axial test was performed on PET bottle, and compressive strengths were respectively compared and analyzed depending on whether dry ice is added or not. As a result, it was confirmed that PET bottle (Geo-bottle) can be applied to the field as substitute for EPS block.

  • PDF

An Analytical Study of Flexible Pavement Design Using Resilient Modulus Model of Expanded Polystyrene (EPS) (EPS 회복탄성계수 모델을 이용한 연성포장설계의 해석적 연구)

  • Park, Ki-Chul;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.35-44
    • /
    • 2015
  • The resilient modulus model of EPS geofoam to be used for a flexible pavement design was developed. In this study, the model was applied to design the flexible pavement and to predict the magnitude of the deformation of EPS geofoam blocks as a subgrade in the flexible pavement structure by using the resilient modulus model of EPS geofoam (RMEG) program. The RMEG program presented how much the EPS geofoam subgrade settled over the designed duration and the AASHTO flexible pavement design equation with the resilient modulus of EPS geofoam noted that how long the flexible pavement endured under traffic loads with 70% reliability for the estimated duration with less than 5mm vertical deformation during 20.6 years without the significant pavement distress as a substitute material for the natural soils.

A Study on the Fire Resistance Performance of RC Structure Void Slab Using The Lightweight Hollow Sphere (경량 중공체를 적용한 RC조 중공슬래브의 내화성능에 관한 연구)

  • Cho, Bum-Yean;Yeo, In-Hwan;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.89-97
    • /
    • 2011
  • This study is for evaluating the fire resistance performance (1~2 h) of the RC Structure void slab using the Lightweight Hollow Sphere, which can reduce the unnecessary dynamic part of removing the central concrete. For this experiment, we set up depth of concrete cover, live load, and span length as the factors. The result comes out with all the slabs under those conditions can ensure the goal fire resistance performance (120 min). And among these factors, the resisting capability changes more sensitively with the live load rather than the thickness of cover. And the shorter span length could assure the better the fire resistance performance. The result observing the character in high temperature of the Lightweight Hollow Sphere which does not used as existing RC structure slab, a delay section in temperature change is occurred due to the Glass Transition in $100^{\circ}C$. And heat transfer by conduction does not occur at lightweight hollow sphere because the polystyrene in EPS (Expanded Polystyrene) melts point in $185^{\circ}C$. Therefore temperature at lightweight hollow sphere is lower than the concrete and rebar.

Mechanical Characteristics of Light-weighted Soils Using Dredged Soils (준설토를 활용한 경량혼합토의 역학적 특성 연구)

  • 윤길림;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.75-83
    • /
    • 2002
  • This paper is to investigate the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene(EPS), dredged clays and cement by using both uniaxial and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analysed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing stress. In the triaxial compression state, it is found that the compressive strength of LWS containing EPS is independent on the effective confined stress. As the EPS ratio decreases($A_E$<2%) and cement ratio increases($A_c$>2%), the behavior characteristics of triaxial compressive strength-strain relationship is similar to that of cemented soil which decreases rapidly in compressive strength after ultimate compressive strength. For the applications of LWS to ground improvements which require the compressive strength of up to 200kPa, the optimized EPS ratio and initial water content of dredged clay are estimated to be 3~4% and 165~175%, respectively. Also, the ultimate compressive strength under both triaxial test and uniaxial compression states are almost constant for a cement ratio of up to 2% and then critical cement ratio of this LWS shall be 2%.

Analytical Study on Resilient Modulus Model of Expanded Polystyrene(EPS) Geofoam as a Subgrade Material in Flexible Pavement (연성포장에서 노상재료로서 EPS지오폼의 회복탄성계수의 모델에 관한 분석적 연구)

  • Park, Ki-Chul;Chang, Yong-Chai
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.61-68
    • /
    • 2012
  • The main objective of this study is to develop an analytical model for the resilient modulus of EPS geofoam when it is applied for flexible pavement as a subgrade material. This analytical model has been developed based on the results from triaxial compression tests. And this model can be used to analyze the flexible pavement structure using the finite element method by developing a program or modifying an existing program for any desired purposes. The results of this study show that the EPS geofoam as a replacement material for subgrade in flexible pavement is a feasible alternative to natural weak soils.

Analysis of Time-Dependent Deformation of Expanded Polystyrene (EPS) Geofoam as a Flexible Pavement Subgrade Material (연성포장의 노반재료로써의 EPS 지오폼의 시간의존적 변형 분석)

  • Park, Ki-Chul;Ramaraj, Babu;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.57-65
    • /
    • 2010
  • The main objective of this study is to investigate the time-dependent deformation of EPS blocks under repeated loading conditions which is the one of the flexible pavement structure. The study comprised of both the experimental work and analytical modeling in order to understand the behavior of EPS blocks under repeated loading. The analytical modeling included the selection of a suitable model for describing the deformation behavior observed under repeated loading conditions, investigating the relationship among the unit weight, deformation and applied stress, analyzing the effect of repeated load on deformation. The test results were compared with the Findley's theory and model analysis with the results of this research under repeated loading conditions. Both Modified Findley's model and the proposed model can be adopted to illustrate the deformation behavior of EPS blocks under repeated loads.

  • PDF

Packaging Design of EPS Cooling Box by Theoretical Heat Flow and Random Vibration Analysis (이론적 열유동 및 랜덤 진동 해석을 적용한 EPS 보냉용기의 포장설계)

  • Kim, Su-Hyun;Park Sang-Hoon;Lee, Min-A;Jung, Hyun-Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.175-180
    • /
    • 2021
  • Although it has recently been regulated for use as an eco-friendly policy in Korea, the use of EPS (Expanded Polystyrene) cooling boxes, which are used as cold chain delivery insulation boxes for fresh agricultural and livestock products, is also increasing rapidly as e-commerce logistics such as delivery have increased rapidly due to COVID-19. Studies were conducted to optimize the EPS cooling container through internal air heat flow of CFD (Computational Fluid Dynamics) analysis and FEM (Finite Element Method) random vibration analysis using domestic PSD (Power Spectral Density) profile of the EPS cooling box to which the refrigerant is applied in this study. In the analysis of the internal air heat flow by the refrigerant in the EPS cooling box, the application of vertical protrusions inside was excellent in volume heat flow and internal air temperature distribution. In addition, as a result of random vibration analysis, the internal vertical protrusion gives the rigid effect of the cooling box, so that displacement and stress generation due to vibration during transport are smaller than that of a general cooling container without protrusion. By utilizing the resonance point (frequency) of the EPS cooling box derived by the Model analysis of ANSYS Software, it can be applied to the insulation and cushion packaging design of the EPS product line, which is widely used as insulation and cushion materials.

Environmental Impact Assessment of EPS Box for Fresh Food in Korea and Europe (한국과 유럽의 신선식품용 EPS박스에 대한 전과정 환경영향평가)

  • SY, Kim;CHAROENSRI, KORAKOT;YJ, Shin;HJ, Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.201-210
    • /
    • 2022
  • Expanded polystyrene (EPS) is the most commonly used fresh food refrigeration insulation in Korea and Europe. Moreover, as the use of disposable packaging materials has increased significantly along with non-face-to-face delivery services since the COVID-19 crisis, social issues related to waste disposal are also being raised. Therefore, in this study, the life cycle of EPS boxes for fresh food is focused on the factors that have a large difference between incineration and landfill including recycling in Europe and Korea in the disposal process after use, and raw materials and energy in the manufacturing process, which account for a large portion of the environmental impact value. We tried to compare the environmental impact of evaluation. Overall, the raw material production stage, box manufacturing stage, and packaging stage have similar processes in Europe and Korea, but unlike Europe, Korea, which lacks landfills and incineration facilities, has focused on expanding the recycling rate. It was necessary to do an environmental impact assessment. Data affecting the environment were derived based on 2019 and 2020 data for Korea and 2017 and 2020 data for Europe. In order to predict the future environmental impact assessment, assumptions about the disposal rate in 2025 and 2030 were introduced and evaluated. As a result of this study, it was found that the raw material production stage of EPS boxes, which have similar processes in both Korea and Europe, has the greatest effect on the global warming effect of Korean EPS boxes. However, Korea, which has a relatively high recycling rate in the disposal process compared to incineration and landfill, showed better environmental performance than Europe in most impact indicators except freshwater eutrophication. In particular, Korea has increased the overall recycling rate compared to Europe by replacing various recyclable materials such as building materials and sundries with XPS (extruded polystyrene) recycled materials. In conclusion, it was found that increasing the recycling rate rather than incinerating and landfilling EPS boxes for fresh food in the domestic EPS industry has relatively less environmental load compared to Europe.