• Title/Summary/Keyword: EPN

Search Result 104, Processing Time 0.019 seconds

Risk assessment of pesticide residues in fruits collected in Gyeonggi-do, Korea from 2006 to 2010 (경기도내 유통 과실류의 잔류농약 위해평가(2006~2010))

  • Do, Young-Sook;Kim, Jung-Beom;Kang, Suk-Ho;Kim, Nan-Young;Um, Mi-Na;Park, Yong-Bae;Oh, Mun-Seok;Yoon, Mi-Hye
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.2
    • /
    • pp.85-97
    • /
    • 2012
  • The monitoring of pesticide residues was performed on 33 fruit commodities collected in Gyeonggi-do, Korea from 2006 to 2010. Pesticide residues were detected in 431 samples (16.8%) of total 2,558 samples and violated in 12 samples (0.5%). Annual detection rate showed 6.9%~19.4% with the rate of violation of 0.3%~0.9%. Twenty three samples (69.7%) of 33 commodities were detected and 4 samples (12.1%) were violated. Eight pesticides (EPN, dicofol, carbaryl, procymidone, methidathion, prothiofos, fenitrothion and phenthoate) were violated and 62 pesticides were detected. Chloropyrifos was detected most frequently. The rate of detection and violation of citrus fruits in fruits showed the highest level. Organophosphorus pesticides (35%) and insecticide (57%) were detected most frequently. The hazard index (%ADI) of chronic dietary risk assessment by deterministic approach showed that the lower limit value and upper limit value for the whole population were 0.0000~0.7526 and 0.0000~1.3237 respectively. For the only consumer group, the lower limit value and upper limit value were 0.0006~9.7801 and 0.0058~15.9258 respectively. Therefore the hazard index for the whole population and the only consumer group were evaluated as a safe level.

A Study on the Risk of Pesticide Exposure by Food Intake (식이섭취를 통한 농약폭로의 위해도에 관한 연구)

  • 전옥경;이용욱
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.2
    • /
    • pp.201-215
    • /
    • 1999
  • Limited information is available on the acceptability of Korean MRLs(maximum residue limits) and the health risk based on the pesticide exposure by food intake. The aim of this study was to evaluate TMDI(theoretical maximum daily intake) and EDI(estimated daily intake) for Korean by using MRLs, food intake, residue data, and correction factors, and compare with ADI(acceptable daily intake) in order to estimate the health risk based on the pesticide exposure. The study was performed in three steps. In the frist step, the residual pesticides in each category of food were investigated using the pesticide residue analytical data(1995-96) from officially approved organizations and the analytical data for poultry was adopted from Korean food code method. In the second step, TMDI was estimated from MRLs and food factors, and was compared with ADI. In the third step, the effectiveness of each culinary treatment (washing, peeling, steaming, boiling, and salting) was evaluated and EDI was calculated using pesticide residue data, food factor, and correction factor by treatment. TMDI obtained from MRLs and food intake, and food intake was summed as 1,100.99 g, which was 79.1% of total consumption. The percent ratio of TMDI to ADI for 156 pesticides was mostly below 80% and only 30 pesticides exceeded the ADI. In particular, non-treated EDI from pesticide residue data and food intake was summed up to about 43 $\mu\textrm{g}$/day/capita, and the rank was procymidone(8.6 $\mu\textrm{g}$) > maleic hydrazide(8.2 $\mu\textrm{g}$) > EPN(3.7 $\mu\textrm{g}$) > deltamethrin(3.5 $\mu\textrm{g}$) > cypermethrin(3.0 $\mu\textrm{g}$). The treated EDI calculated from pesticide residue data, food intake, and correction factor by culinary treatment was summed up to 13.7 $\mu\textrm{g}$/day/captia. The percentage of ADI was TMDI(79.74%) > non-treated EDI (0.17%) > treated EDI (0.04%), and the exposure level of Korean population to whole pesticides was below the level to produce health risk. Oncogenic risk of five pesticides used in Korea whose oncogenic potency(Q*) was known were assessed from TMDI and treated EDI. Dietary oncogenic risk for Korean was estimated to be 2.0$\times$10-3 on the basis of TMDI, 8.3$\times$10-7 on the basis of treated EDI. The oncogenic risk from TMDI exceeded the risk level(1$\times$10-6) of EPA, whereas the oncogenic risk from treated EDI and real exposure level lower than that of EPA.

  • PDF

Development of an Inverted Y-Shaped Strip for the Detection of Organophosphorus and Carbamate Residual Pesticides (유기인계 및 카바메이트계 농약 신속 검출을 위한 역 Y자 스트립의 개발)

  • Lee, Jeong-Eun;Kim, Sol-A;Park, Hyun-Jin;Mun, Hyoyoung;Shim, Won-Bo
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • The inverted Y-shaped strip detection method based on acetylcholinesterase (AChE) was developed for the rapid detection of organophosphorus and carbamate pesticides. The inactivation of AChE by organophosphorus and carbamate pesticides has been well known. The AChE catalyzes acetylthiocholine into thiocholine having (-) and (+) charges, and the (+) charge results in aggregation of gold nanoparticle (GNP). Malaoxon and carbofuran were used as standard organophosphorus and carbamate for the development of the inverted Y-shaped strip, respectively. In order to optimize the method, various angles of the Y-shaped strip, different types of nitrocellulose membrane, and concentration of AChE were tested as key parameters. The detection limit of the method was 10 ng/mL for both malaoxon and carbofuran pesticides. No cross-reaction was observed to other pesticides such as atrazine, cyanazine, simazine, bifenthrin, boscalid, metalaxyl, and chlorobenzilate. Recoveries from lettuce spiked when known concentrations of malaoxon and carbofuran were found ranging from 96.4 to 100.7% and 81 to 112.7%, respectively. This study suggests that the inverted Y-shaped strip method based on AChE may be a useful tool for the sensitive, specific, rapid detection of organophosphorus and carbamate pesticides in agricultural products.

Application of Oral Acute Toxic Class Method and Globally Harmonized Classification System on Pesticide (국내에서 농약에 대한 급성경구독성등급법 적용 및 GHS 체계 도입 제안)

  • Jeong, Mi-Hye;You, Are-Sun;Park, Kyung-Hun;Kim, Byung-Seok;Lee, Hee-Dong;Lee, Jae-Bong;Kwon, Oh-Kyung
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.2
    • /
    • pp.141-147
    • /
    • 2008
  • Globally Harmonized System (GHS) for classification and labelling will provide an internationally agreed hazard classification system of chemical products and for communication of those hazards. This study aimed for establishment of the oral acute toxic class (ATC) method and application of GHS on pesticides. The ATC method was developed for determining $LD_{50}$ estimates of chemical substances with significantly fewer animals than needed when applying conventional $LD_{50}$ tests. We carried out $LD_{50}$ test and ATC test on 13 pesticides, Although methidathion EC and parathion-ethyl EC showed significantly different in $LD_{50}$ values between $LD_{50}$ test and ATC method, there are no difference in toxicity class by GHS. Both tests on the other pesticides showed almost equal results and toxicity class by GHS. Therefore, this study indicated high possibility of application of ATC method and GHS on pesticides.