• Title/Summary/Keyword: ENERGY model

Search Result 11,773, Processing Time 0.148 seconds

A Study on the Economic and Social Benefits of the Microgrid Business Model in Island Areas : Consumer's Community Solar Participation in Development (도서지역 마이크로그리드 사업모델의 경제적, 사회적 편익에 관한 연구: 수요자의 태양광 에너지 공동체를 중심으로)

  • Lee, SangHee;Lee, Hae-Seok;Kim, Kyung Nam
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.59-73
    • /
    • 2021
  • The purpose of this study is to develop a business model that efficiently converts diesel power generation systems to renewable energy microgrids (MG) in large-scale islands. Most of the previous studies on the conversion of renewable energy MG in islands had limitations dealing with efficiency from the perspective of suppliers. However, the microgrid has the characteristic of getting benefits through the interaction between the consumer and the supplier. In addition, the efficient MG business model from the perspective of new institutional economics is a structure in which consumers and suppliers jointly participate. Therefore, this study assumed that the MG business model in which the supplier's MG and the consumer's community solar participated would benefit all participants, and verified the assumptions using domestic island data. In terms of supplier investment, the cost of power supply (LCOE) of assumed model was calculated to be 14.0% lower than that of the diesel model and 3.7% lower than that of the supplier-only MG model. From the perspective of consumer investment, electricity bills are expected to be reduced by more than 200,000 won per household per year through self-generation of solar power. Social benefits are expected to reduce external environmental costs. The CO2 emissions of the assumed model were calculated to be 39.5% lower than the diesel model and 1.5% lower than the supplier-only MG model. Therefore, the MG business model with consumer participation proposed in this study is expected to be an efficient alternative to renewable energy MG conversion in domestic islands, and is meaningful as an energy plan that improves the benefits of local residents.

A three-region movable-boundary helical coil once-through steam generator model for dynamic simulation and controller design

  • Shifa Wu;Zehua Li;Pengfei Wang;G.H. Su;Jiashuang Wan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.460-474
    • /
    • 2023
  • A simple but accurate mathematical model is crucial for dynamic simulations and controller design of helical coil once-through steam generator (OTSG). This paper presents a three-region movable boundary dynamic model of the helical coil OTSG. Based on the secondary side fluid conditions, the OTSG is divided into subcooled region (two control volumes), two-phase region (two control volumes) and superheated region (three control volumes) with movable boiling boundaries between each region. The nonlinear dynamic model is derived based on mass, energy and momentum conservation equations. And the linear model is obtained by using the transfer function and state space transformation, which is a 37-order model of five input and three output. Validations are made under full-power steady-state condition and four transient conditions. Results show good agreements among the nonlinear model, linear model and the RELAP5 model, with acceptable errors. This model can be applied to dynamic simulations and controller design of helical coil OTSG with constant primary-side flow rate.

Non-linear Regression Model Between Solar Irradiation and PV Power Generation by Using Gompertz Curve (Gompertz 곡선을 이용한 비선형 일사량-태양광 발전량 회귀 모델)

  • Kim, Boyoung;Alba, Vilanova Cortezon;Kim, Chang Ki;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Hyung-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.113-125
    • /
    • 2019
  • With the opening of the small power brokerage business market in December 2018, the small power trading market has started in Korea. Operators must submit the day-ahead estimates of power output and receive incentives based on its accuracy. Therefore, the accuracy of power generation forecasts is directly affects profits of the operators. The forecasting process for power generation can be divided into two procedure. The first is to forecast solar irradiation and the second is to transform forecasted solar irradiation into power generation. There are two methods for transformation. One is to simulate with physical model, and another is to use regression model. In this study, we found the best-fit regression model by analyzing hourly data of PV output and solar irradiation data during three years for 242 PV plants in Korea. The best model was not a linear model, but a sigmoidal model and specifically a Gompertz model. The combined linear regression and Gompertz curve was proposed because a the curve has non-zero y-intercept. As the result, R2 and RMSE between observed data and the curve was significantly reduced.

A Study on the Limitation and Improvement of Simple Window Model applied to EnergyPlus (EnergyPlus에 적용된 Simple Window Model의 한계와 개선에 관한 연구)

  • Kim, Tae Ho;Ko, Sung Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.515-529
    • /
    • 2017
  • EnergyPlus, which is widely used in various fields, provides Simple Window Model, a window model that can be used practically. However, the results of building load using the model are different from those of the standard model. The main cause of the deviation by Simple Window Model was analyzed to be due to the assumption that all windows were considered as single layer. The purpose of this study is to propose a window model that improves the cause of deviation by Simple Window Model and can be easily calculated from the algebraic relations. The proposed window model solved the heat balance equation algebraically by using seven window characteristic coefficients. The coefficient relationships consisted of the heat transmission coefficient and solar heat gain coefficient as input parameters make practical use and calculation possible. As a result of comparing the deviation between each window model by implementing the dynamic analysis method, the proposed window model showed that the deviation of the total heating/cooling energy consumption was reduced to 1/3 compared to Simple Window Model for one year. Although the maximum energy consumption did not show any significant improvement, the indoor temperature evaluation showed significantly reduced deviation.

Energy Evaluation Studies on Pyroprocessing of Solids (고체 물질의 고온 처리 공정에 관한 에너지 평가 연구)

  • Ha, Daeseung;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.305-307
    • /
    • 2014
  • Pyroprocessing (or pyrometallurgy) is the way of extracting from materials subjected to high temperatures. Generally, this process has a high energy consumption because of mass production and heating-up. To attain effective and efficient energy management, energetic analysis using 0-dimensional model is usually conducted. However, this model can lead to a misunderstanding about energy evaluation due to many assumptions and limitations. In this study, heat & mass balance using 0-dimensional model was reviewed to systematize problems and considerations in general process energy evaluation.

  • PDF

An Optimal Operation Model of A Centralized Micro-Energy Network (마이크로 에너지 네트워크의 중앙집중형 최적 운영 모델)

  • Lee, Ji-Hye;Kim, Hak-Man;Im, Young Hoon;Lee, Jae Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1451-1457
    • /
    • 2013
  • Recently, new concept of energy systems such as microgrid, smart grid, supergrid, and energy network has been introducing. In this paper, the concept of the centralized micro-energy network, which is an energy community of a building group without district heating system, is introduced. In addition, a mathematical model for optimal operation of the micro-energy network as a main function of an energy management system (EMS) for the micro-energy network is proposed. In order to show the validation, the proposed model is tested through the simulation and analyzed.

A Case Study on Energy Performance Analysis of Retrofitted Building Using Inverse Model Toolkit (Inverse Model Toolkit을 이용한 리모델링 건축물의 에너지 성능평가 사례)

  • Kwon, Kyung-Woo;Lee, Suk-Joo;Park, Jun-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.8
    • /
    • pp.394-400
    • /
    • 2014
  • Several models and methods have been developed to verify the improvement of energy performance in retrofit buildings. The verification is important to confirm the effectiveness of new technologies or retrofits. Inverse model toolkit proposed by ASHRAE evaluates the changes of the energy performance of retrofit buildings by using actual energy consumption data. In this study, the inverse model toolkit was used to analyze heating and cooling energy performance of an office building. Analyzed coefficients of correlation of actual energy consumption with estimated energy consumption was above 0.92 and well fitted. It was confirmed that energy consumption of natural gas decreased by 43.4% and also that electricity decreased by 13.8%, after the retrofit of the case building. For the energy usage, cooling energy was increased by 7.4%, heating energy was decreased by 42.3%, hot water and cooking were increased by 3.4%, lighting and electronics were decreased by 19.3%, and the total energy was decreased by 18.9%.

Analysis of residential natural gas consumption distribution function in Korea - a mixture model

  • Kim, Ho-Young;Lim, Seul-Ye;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.36-41
    • /
    • 2014
  • The world's overall need for natural gas (NG) has been growing up fast, especially in the residential sector. The better the estimation of residential NG consumption (RNGC) distribution, the better decision-making for a residential NG policy such as pricing, demand estimation, management options and so on. Approximating the distribution of RNGC is complicated by zero observations in the sample. To deal with the zero observations by allowing a point mass at zero, a mixture model of RNGC distributions is proposed and applied. The RNGC distribution is specified as a mixture of two distributions, one with a point mass at zero and the other with full support on the positive half of the real line. The model is empirically verified for household RNGC survey data collected in Korea. The mixture model can easily capture the common bimodality feature of the RNGC distribution. In addition, when covariates were added to the model, it was found that the probability that a household has non-expenditure significantly varies with some variables. Finally, the goodness-of-fit test suggests that the data are well represented by the mixture model.

Dynamic Thermal Model of a Lighting System and its Thermal Influence within a Low Energy Building

  • Park, Herie;Lim, Dong-Young;Choi, Eun-Hyeok;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.9-15
    • /
    • 2014
  • This paper focuses on the heat gain of a lighting system, one of the most-used appliances in buildings, and its thermal effect within a low energy building. In this study, a dynamic thermal model of a lighting system is first established based on the first principle of thermodynamics. Then, thermal parameters of this model are estimated by experiments and an optimization process. Afterward, the obtained model of the system is validated by comparing simulation results to experimental one. Finally it is integrated into a low energy building model in order to quantify its thermal influence within a low energy building. As a result, heat flux of the lighting system, indoor temperature and heating energy demands of the building are obtained and compared with the results obtained by the conventional model of a lighting system. This paper helps to understand thermal dynamics of a lighting system and to further apply lighting systems for energy management of low energy buildings.

Evaluation of Environmental Performance of Energy Systems employing Market Allocation Model in Building Sector in Korea (시장분배모형을 이용한 건물부문 에너지 시스템 환경성능평가)

  • Park, Tong-So
    • KIEAE Journal
    • /
    • v.2 no.4
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, the evaluation of environmental performance of the building energy system of domestic commercial sector was carried out. Based on the theory of linear programming model, we established an evaluation model satisfying object functions and constraint conditions. Employing the model, the evaluation of building energy system was performed under the consideration of cost and environmental constraint conditions. As an evaluation tool, MARKAL (MARKet Allocation) known as a market distribution model was employed. We analyzed scenarios of Case I (Base Scenarios) through Case IX established by the combination of the components of building energy system such as glazing, building skin, core, and heat source system. According to the results of the evaluation, highest contribution on the useful energy demand was obtained from the building energy system combined with solar heat source system, when the total amounts of $CO_2$ exhaust as an environmental constraint condition is assumed to be the level of 1995.