• Title/Summary/Keyword: ENERGY EFFICIENCY

Search Result 11,032, Processing Time 0.042 seconds

Direct Combustion Characteristics of Coal by Oxygen Carrier (산소공여입자에 의한 석탄의 직접연소 특성)

  • Ryu, Hojung;Lee, Chungwon;Lee, Dongho;Bae, Dalhee;Lee, Suengyong;Park, Yeongseong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.87-96
    • /
    • 2014
  • Direct combustion characteristics of coal and oxygen carrier were measured in the thermogravimetric analyzer using four coals and two different oxygen carriers. The direct combustion efficiency decreased in order of Roto, Kideco, Sunhwa and Hyper coal for both oxygen carriers. Moreover, OCN703-1100 oxygen carrier showed better combustion efficiency than OCN706-1100 oxygen carrier for all four coals. The reduction characteristics of two oxygen carriers for $CH_4$, CO and $H_2$ gases were measured in the thermogravimetric analyzer to investigate why OCN703-1100 oxygen carrier showed better combustion efficiency than OCN706-1100 for all coals. The OCN703-1100 oxygen carrier represented higher reduction rate than OCN706-1100 for all reducing gases. Moreover, the total pore area and the porosity of OCN703-1100 were higher than those of OCN706-1100 oxygen carrier. The total volatile gas and volatile components of four coals were measured in a batch type fluidized bed reactor to investigate why the direct combustion efficiency decreased in order of Roto, Kideco, Sunhwa and Hyper coal for both oxygen carriers. The direct combustion efficiency was proportional to the total amount of ($CH_4+CO+H_2$) produced during devolatilization of coals.

Experimental Study for Thermal Performance of Hybrid Air-Water Heater Using Solar Energy during Heating Medium Working Simultaneously (복합형 태양열 가열기 열매체 동시운전시의 열적 성능에 관한 실험적 연구)

  • Choi, Kwang-Hwan;Yoon, Jung-In;Son, Chang-Hyo;Choi, Hwi-Ung;Kim, Bu-Ahn
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.115-121
    • /
    • 2014
  • With increment on interesting about improving renewable energy efficiency, many research have been conducted and the research about hybrid air-water heater using solar energy that can make heating air and hot water has been conducted also. In this experiment, the temperature difference and thermal efficiency were investigated when two heating medium(air and liquid) was working simultaneously. As a result, thermal efficiency showed 44% to 88% when these heating medium was working simultaneously depending on operation condition and it is better than traditional solar collector. Also possibility of application into building equipment also was confirmed based on temperature and thermal efficiency. But necessity of additional studies about proper operation condition according to purpose of use and heat load was confirmed because change of thermal efficiency by air velocity and flux of liquid was shown a huge difference.

A Study on Open BIM based Building Energy Evaluation based on Quantitative Factors

  • Kim, In-han;Jin, Jin;Choi, Jung-Sik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.4
    • /
    • pp.289-296
    • /
    • 2010
  • Energy consumption by buildings accounts for a large part of the world‘s energy consumption. Methods to analyze building energy consumption before construction have been studied for decades. With BIM (Building Information Modeling) technology, architects can easily export building information to data models in order to analyze the design‘s effect on building energy efficiency. Although several BIM-based energy simulation applications are currently available, utilizing these applications for energy efficiency simulation is difficult. In this paper, by comparing existing BIM-based energy applications, the authors test the building energy efficiencies estimated by some BIM models, offer ideas and solutions to problems that appeared during the test process and propose new methods for BIM-based energy evaluation based on quantitative factors.

Development of Sensor Based Energy Management System (센서기반 에너지 모니터링 프로토타입 시스템)

  • Um, Dae-Jin;Choi, Jung-In;Lee, Ingyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.69-74
    • /
    • 2014
  • With the increasing interest of energy efficiency, several buildings and factories begin to monitor energy usages with a built-in energy management system. However, the built-in energy monitoring system does not reflect the dynamics of buildings and factories energy usage. To overcome the latter, we deploy several sensors to monitor the dynamics of buildings energy usage patterns. In this paper, we are proposing a framework of a sensor based energy monitoring system. Based on our limited experiments, we can monitor power usages by a person, device and time period. As a result, we can plan a better energy usage and improve energy efficiency by the monitored energy usage profile data.

A BIM-based Design Method for Energy-Efficient Housing (BIM 기반의 저에너지 주거공간 설계 기법 연구)

  • Yoon, Seung-Hyun;Park, Nam-Hee;Choi, Jin-Won
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.187-192
    • /
    • 2009
  • Nowadays, global warming and high oil prices were a threat to the survival of the whole human race. One of a solution to respond to these problems is to reduce energy consumption of building. By adopting energy-saving design, the dissemination of low energy building is required. Therefore, to improve energy efficiency while reducing the usage of the design method is necessary to study actively. BIM-based systems applied to buildings, scheduled to be built by reducing the amount of energy reduction technologies can be analyzed. Depending on various design and equipment to set energy savings goals, you can select an alternative. If it is possible to predict the energy efficiency from the initial stage of design and support designing low energy building, we would be able to expect improvement in the economics of housing due to the reduction of energy consumption.

  • PDF

A Comparative Assessment of Hydrogen Facility Installation for Net-Zero Energy District Planning (제로에너지단지의 적정 수소 활용 규모 및 운용방식에 관한 연구)

  • Junoh Kim;Chulhee Kim;Soyeon Chu
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • This study aims to evaluate the optimal size of the hydrogen facility to be installed in a zero-energy district in terms of load matching and facility efficiency. A mismatch between energy generation and consumption is a common occurrence in zero-energy districts. This mismatch adversely effects the energy grid. However, using an energy carrier such as hydrogen can solve this problem. To determine the optimal size of hydrogen fuel cells to be used on-site, simulation of hydrogen installation is required at both district-and building- levels. Each case had four operating schedules. Therefore, we evaluated eight scenarios in terms of load matching, heat loss, and facility operational efficiency. The results indicate that district-level installation of hydrogen facilities enables more efficient energy use. Additionally, based on the proposed model, we can calculate the optimal size of the hydrogen facility.

Design by Improved Energy Efficiency MAC Protocol based on Wireless Sensor Networks (무선 센서 네트워크 기반 에너지 효율성이 개선된 MAC 프로토콜 설계)

  • Lee, Cheol-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.439-444
    • /
    • 2017
  • Wireless sensor network technology is a rapidly growing technology of ubiquitous computing environment and application and research are being carried out in various fields. The sensor nodes constituting the wireless sensor network maintain the life cycle by using the battery in the distributed network environment, so energy efficiency is more important than QoS requirement. In MAC protocol of IEEE802.15.4, MAC protocol study adaptive to traffic and standardization work emphasizing reliability and efficiency in wireless sensor network environment are underway. but, Wireless sensor networks have the problem that the response speed of the sensor node drops as the energy efficiency decreases. In this paper, we designed the MAC protocol with improved energy efficiency of the whole network by analyzing the MAC protocol of the synchronous method and the hybrid method.

Low-cost Contact formation of High-Efficiency Crystalline Silicon Solar Cells by Plating

  • Kim D. S.;Lee E. J.;Kim J.;Lee S. H.
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.37-43
    • /
    • 2005
  • High-efficiency silicon solar cells have potential applications on mobile electronics and electrical vehicles. The fabrication processes of the high efficiency cells necessitate com placated fabrication precesses and expensive materials. Ti/Pd/Ag metal contact has been used only for limited area In spite of good stability and low contact resistance because of Its expensive material cost and precesses. Screen printed contact formed by Ag paste causes a low fill factor and a high shading loss of commercial solar cells because of high contact resistance and a low aspect ratio. Low cost Ni/Cu metal contact has been formed by using a low cost electroless and electroplating. Nickel silicide formation at the interface enhances stability and reduces the contact resistance resulting In an energy conversion efficiency of $20.2\%\;on\;0.50{\Omega}cm$ FZ wafer. Tapered contact structure has been applied to large area solar cells with $6.7\times6.7cm^2$ in order to reduce power losses by the front contact The tapered front metal contact Is easily formed by the electroplating technique producing $45cm^2$ solar cells with an efficiency of $21.4\%$ on $21.4\%\;on\;2{\Omega}cm$ FZ wafer.

  • PDF

A Simulation based Study on the Economical Operating Strategies for a Residential Fuel Cell System (시뮬레이션 기반 가정용 연료전지 시스템의 경제적 운전전략에 관한 연구)

  • Hwang, Su-Young;Kim, Min-Jin;Lee, Jin-Ho;Lee, Won-Yong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.104-115
    • /
    • 2009
  • In case of residential fuel cell system, it is significant to stably supply heat and power to a house with high efficiency and low cost for the successful commercialization. In this paper, the control strategy analysis has been performed to minimize the total cost including capital and operating cost of the residential fuel cell system. The proposed analysis methodology is based on the simulator including the efficiency models as well as the cost data for fuel cell components. The load control strategy is the key factor to decide the system efficiency and thus the cost analysis is performed when the fuel cell system is operated for several different load control logics. Additionally, annual efficiency of the system based on the seasonal load data is calculated since system efficiency is changeable according to the electric and heat demand change. As a result, the hybrid load control combined electricity oriented control and heat oriented control has the most economical operation.

Secrecy Spectrum and Secrecy Energy Efficiency in Massive MIMO Enabled HetNets

  • Zhong, Zhihao;Peng, Jianhua;Huang, Kaizhi;Xia, Lu;Qi, Xiaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.628-649
    • /
    • 2017
  • Security and resource-saving are both demands of the fifth generation (5G) wireless networks. In this paper, we study the secrecy spectrum efficiency (SSE) and secrecy energy efficiency (SEE) of a K-tier massive multiple-input multiple-output (MIMO) enabled heterogeneous cellular network (HetNet), in which artificial noise (AN) are employed for secrecy enhancement. Assuming (i) independent Poisson point process model for the locations of base stations (BSs) of each tier as well as that of eavesdroppers, (ii) zero-forcing precoding at the macrocell BSs (MBSs), and (iii) maximum average received power-based cell selection, the tractable lower bound expressions for SSE and SEE of massive MIMO enabled HetNets are derived. Then, the influences on secrecy oriented spectrum and energy efficiency performance caused by the power allocation for AN, transmit antenna number, number of users served by each MBS, and eavesdropper density are analyzed respectively. Moreover, the analysis accuracy is verified by Monte Carlo simulations.