• Title/Summary/Keyword: EMTP(electro-magnetic transients program)

Search Result 53, Processing Time 0.037 seconds

The analysis of the effects for the various fault location on the distribution lines (배전 선로에서 고장 위치에 따른 영향 분석)

  • Kim, Min-Seok;Lim, Kyong-Sub;Seong, No-Kyu;Yeo, Sang-Min;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2223_2224
    • /
    • 2009
  • 현대 사회에서의 배전은 단순히 전력 공급에서 그치는 것이 아니라, 우수한 전력 품질을 지닌 전기를 공급해 주는 것에 큰 의미를 두고 있다. 배전 선로에서 고장이 발생할 경우 서로 유기적인 연관성 및 부하의 밀집도가 큰 배전계통의 특성상 전력품질저하 및 고장파급효과가 매우 크다. 전력품질은 일정한 주파수 및 전류, 전압 등을 기반으로 하며 고장에 의해 이러한 요소들이 영향을 받아 전력품질 저하의 원인이 된다. 따라서 배전계통에서의 고장에 의한 영향을 자세히 분석하기 위해 EMTP(ElectroMagnetic Transients Program)를 이용하여 고장을 모의하고 결과를 분석하였다. 다양한 유형의 조건을 모의하기 위해 계통의 여러 위치에서 1선지락 고장을 모의하였고, 각 고장 지점에 따라 다양한 위치에서 전압과 전류를 측정하여 고장의 파급효과를 측정하여 고장 발생 시 전압과 전류의 관계 및 거리에 따른 고장파급효과를 분석하였다.

  • PDF

The prospective TRV analysis of 345KV transmission system (345 KV 송전계통의 고유 TRV 해석)

  • Yoon, Jae-Young;Jung, Wee-Sik;Park, Dong-Wook;Min, Suk-Won;Jung, Sang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.397-400
    • /
    • 1989
  • The interrupting capability of circuit breaker to have an effect on stability and reliability of the power system is largely determined by the fault current and prospective TRV (prospective transient recovery voltage). The prospective TRV, which is essentially a system function determined by the elements of the connected circuit, is not constant for a given system location but is affected by a number of variables. Therefore, the purpose of this study is to analyze the prospective TRV of KEPCO's 345KV transmission system by using EMTP (Electro-Magnetic Transients Program) and to compare the calculated values with the standard values in KSB 150 (1976)

  • PDF

Fault Location Calculation using Improved NVP Model (개선된 NVP를 이용한 새로운 고장점 표정 계산 모델)

  • Jang Yong Won;Kim Won Ha;Han Seung Soo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.21-23
    • /
    • 2004
  • 전력 에너지는 안정하고 신뢰할 수 있도록 고장에 대한 빠른 대처가 필요하다. 고장시 빠른 수리를 위해서는 보수 승무원에게 고장 위치를 정확하게 알려주어 올바른 위치에 도착할 수 있도록 고장점 표정 알고리즘의 정확도가 요구된다. 본 논문에서는 기존 1회선 분기점을 갖는 병행 2회선 송전선로의 고장점 표정 알고리즘을 이용하여 정확한 고장 위치를 찾는 방법으로 개선된 NVP(N-version programming) 모델을 적용한 새로운 계산 방법을 제안한다. 송전선로의 고장 데이터는 EMTP(Electro Magnetic Transients Program)을 사용하여 154[kV], 25[km] 분기된, 병행 2회선 송전선로에서 고장지진과 고장저항의 데이터존 이용하여 시뮬레이션했다.

  • PDF

Analysis of an Induced Voltage of Gaspipeline Due to Faults in Transmission Systems (송전계통 고장에 의한 Gaspipeline의 유도전압 분석)

  • Kang, Joong-Koo;Kim, Hyoun-Su;Rhee, Sang-Bong;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.181-182
    • /
    • 2008
  • Gaspipe buried close to power lines can be subjected to hazardous induction effects, especially during single line to ground faults. Accordingly, it is necessary to take into consideration for analysis of induced voltage on a gaspipeline in transmission lines. This paper analyses the induced voltage on the gaspipeline due to single line to ground faults of the transmission lines using EMTP (Electro-Magnetic Transients Program).

  • PDF

Voltage Swell Compensation using an UPFC in Distribution System (배전계통에서 UPFC를 이용한 순시전압상승 보상)

  • Jang, Won-Hyeok;Rhee, Sang-Bong;Lee, Myoung-Hee;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.488-489
    • /
    • 2008
  • Based on the fact that renewable energies such as photovoltaic, wind power, etc. are increasingly used in distribution systems recently which affects overvoltage, this paper implements an unified power flow controller(UPFC) to compensate voltage swell. The implemented scheme employs an ac chopper and a low-pass filter along with a series transformer. The ac chopper converts the amplitude of the voltage down to the nominal value. The low pass filter makes the rough waveform of the output voltage of the ac chopper due to switching smoothly by eliminating harmonics. To verify the effectiveness of the implemented UPFC, the results by Electro-Magnetic Transients Program(EMTP) are presented for various overvoltage cases.

  • PDF

A Study for Analysis of Transient Recovery Voltage and Control method of Circuit Breaker According to the Load condition (부하에 따른 차단기 극간의 과도회복전압 분석 및 제어기법)

  • Park, Sung-Tae;Kim, Hyoun-Su;Rhee, Sang-Bong;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.253-254
    • /
    • 2008
  • 본 논문에서는 계통 부하에 따른 차단기의 최적 개폐시점 선정을 위해 지상 및 진상 부하별 과도회복전압 발생 추이를 분석하였다. 또한 모선 전압의 위상 변화에 따라 차단기의 개극 시점 변화를 통해 발생되는 과도 회복전압의 파형을 분석하여 최적의 개폐 시점 추정을 EMTP(Electro-Magnetic Transients Program) 시뮬레이션 결과로 얻고 부하에 따른 차단기 개폐 제어 방법에 대해 분석하였다.

  • PDF

System Effects by Operation Characteristics of Superconducting Fault Current Limiters in Distribution Systems (배전계통 초전도 한류기 동작특성에 따른 계통 영향 분석)

  • Rhee, Sang-Bong;Kim, Chul-Hwan;Kim, Kyu-Ho;Kim, Jae-Chul;Hyun, Ok-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1135-1140
    • /
    • 2008
  • Superconducting fault current limiters (SFCL) have been progressing due to the development of superconducting technology. The resistor type SFCL is one of the promising current limiting devices in power system for its effective operation. For proper application and operation of a SFCL, the prior investigation of fundamental characteristics and its effects to the distribution systems are needed. The most important current limiting behavior of a SFCL is dominated by quenching and recovery characteristics. In this paper, the resistive type SFCL was developed by using EMTP/ATPDraw and MODELS language. The operating characteristics and current limiting behaviors of the SFCL in distribution systems have been simulated and investigated.

A Study on the Estimation Technique of Frequency in the Power System using FIR Filter (FIR 필터를 이용한 전력계통 주파수 추정기법에 관한 연구)

  • Nam, S.B.;Lee, H.G.;Park, C.W.;Shin, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.80-85
    • /
    • 2001
  • Frequency is an important operating parameter of a power system. Frequency of a power system remains constant if sum of all the loads plus losses equals total generation in the system. However, the frequency starts to decrease if total generation is less than the sum of loads and tosses. On the other hand, the system frequency increases if total generation exceeds the sum of loads and losses. Electric power systems sustain transient frequency swings whenever the balance between generation and load does not no longer hold. To cope with this Constraints, it requires an accurate and high speedy frequency deviation estimation technique and suitable adjustment to obtain the power system energy balance. The fundamental frequency component of 3-phase signal is first extracted by using an algorithm based on FIR(finite duration impulse response) filter, a phase angle of a voltage. The rate change of the phase angle is used for estimation and speed in its process. Also, to confirm the validity of the proposed algorithm, the simulation results obtained by using EMTP(electro magnetic transients program) are shown.

  • PDF

A Study on Voltage Sag Considering Real-Time Traffic Volume of Electric Vehicles in South Korea

  • Go, Hyo-Sang;Kim, Doo-Ung;Kim, Jun-Hyeok;Lee, Soon-Jeong;Kim, Seul-Ki;Kim, Eung-Sang;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1492-1501
    • /
    • 2015
  • This paper analyzes the effect of voltage sag on distribution systems due to the connection of Electric Vehicles (EVs). In order to study the impact of the voltage sag on the power system, two scenarios have been selected in this paper. The distribution system and EVs are modeled using the Electro Magnetic Transients Program (EMTP). The numbers of EVs are predicted based on the number of vehicles in distribution system of Seoul. In addition, the number of EVs is set up using real-time traffic in Seoul to simulate Scenario I and II. The simulation results show that voltage sag can occur if the distribution system has more than 30% of the total number of vehicles.

Development of Protection Method for Power System interconnected with Distributed Generation using Distance Relay

  • Kim, Ji-Soo;Cho, Gyu-Jung;Song, Jin-Sol;Shin, Jae-Yun;Kim, Dong-Hyun;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2196-2202
    • /
    • 2018
  • The conventional power system allowed only downstream power flow. Therefore, even if a fault occurs, only the forward current flow is considered. However, with the interest in distributed generation (DG), DGs such as Photovoltaic (PV), Wind Turbine (WT) are being connected to a power system. DGs have many advantages, but they also have disadvantage such as generation of reverse flow. Reverse flow can severely disrupt existing protection systems that only consider downstream power flow. The major problems that may arise from reverse power flow are blinding protection and sympathetic tripping. In order to solve such problems, the methods of installing a directional relay or a fault current limiter is proposed. However, this method is inconceivable because of the economics shortage. Therefore, in this paper, a distance relay installed in existing power system is used to solve the protection problem. Modeling of distance relay has been carried out using ElectroMagnetic Transients Program (EMTP), and it has been verified through simulations that the above problems can be solved by a distance relay.