• 제목/요약/키워드: EMTDC model

검색결과 235건 처리시간 0.028초

A Power Losses Analysis of AC Railway Power Feeding Network using Adaptive Voltage Control (능동형 전압제어를 통한 교류 전기철도 급전망에 대한 전력손실 분석)

  • Jung, Hosung;Kim, Hyungchul;Shin, Seongkuen;Kim, Jinho;Yoon, Kiyong;Cho, Yonghyeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제62권11호
    • /
    • pp.1621-1627
    • /
    • 2013
  • This paper compares power losses between voltage controlled before and after using power conversion device in AC feeding system. For this purpose we present voltage control procedures and criteria and model high speed line and train using PSCAD/EMTDC to compare power losses in various feeding condition. Power losses of the simulation result in power control before and after in single point feeding system was reduced maximum 0.37 MW(23.8 %) and average 0.23 MW(20.5 %) when one vehicle load operates maximum load condition. When three vehicles operate maximum load condition in one feeder section, power losses after voltage control was reduced 1.03 MW(49.5%) compared to before voltage control. And, power loss of parallel feeding system is reduced the average 0.08 MW(7.2 %) compared to the single feeding system. In conclusion, adaptive voltage control method using power conversion device can reduce power losses compared with existing method.

A Novel Operational Method of PV Power Generation System for SPE (수소제조시스템을 위한 새로운 태양광발전시스템 운전기법에 관한 연구)

  • Choi, Jong-Ho;Lee, Dong-Han;Kim, Jong-Hyun;Kim, Jae-Ho;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.408-410
    • /
    • 2006
  • To chase maximum power point at every moment under a conventional MPPT control method, a voltage and current coming out from PV-cell are needed to be feedbacked. So, the structure of control circuit becomes so complex and the MPPT control is in risk of control failure. In the newly developed control method, the current flowing into SPE cell is the only one considerable factor. So, the structure of control circuit becomes simple and the manufacturing cost of the control device decreases. Especially, in case of a huge system of PV-SPE system, because the voltage coming out from PV-cell is not needed to be feed backed, this system can be operated much more safely. In this paper, the PV-SPE system was actually manufactured based on the simulation model of PSCAD/EMTDC program and the results tested were shown. Authors are sure that it is the most useful method to maximize power from PV to SPE with only a feedback of SPE input current.

  • PDF

Grid-tied Power Conditioning System for Fuel Cell Composed of Three-phase Current-fed DC-DC Converter and PWM Inverter

  • Jeong, Jong-Kyou;Lee, Ji-Heon;Han, Byung-Moon;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.255-262
    • /
    • 2011
  • This paper proposes a grid-tied power conditioning system for fuel cell, which consists of three-phase current-fed DC-DC converter and three-phase PWM inverter. The three-phase current-fed DC-DC converter boosts fuel cell voltage of 26-48 V up to 400 V with zero-voltage switching (ZVS) scheme, while the three-phase PWM(Pulse Width Modulation) inverter controls the active and reactive power supplied to the grid. The operation of the proposed power conditioning system with fuel cell model is verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation is verified through experimental works with a laboratory prototype with 1.2 kW proton exchange membrane (PEM) fuel cell stack. The proposed power conditioning system can be commercialized to interconnect the fuel cell with the power grid.

Transient Characteristics and Physical Constraints of Grid-Tied Virtual Synchronous Machines

  • Yuan, Chang;Liu, Chang;Yang, Dan;Zhou, Ruibing;Tang, Niang
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1111-1126
    • /
    • 2018
  • In modern power systems, distributed generators (DGs) result in high stress on system frequency stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method referred to as a virtual synchronous machine (VSM) has been proposed, which brought new characteristics to inverters such as synchronous machines (SM). DGs employing an energy storage system (ESS) provide inertia and damping through VSM control. Meanwhile, energy storage presents some physical constraints in the VSM implementation level. In this paper, a VSM mathematical model is built and analyzed. The dynamic responses of the output active power are presented when a step change in the frequency occurs. The influences of the inertia constant, damping factor and operating point on the ESS volume margins are investigated. In addition, physical constraints are proposed based on these analyses. The proposed physical constraints are simulated using PSCAD/EMTDC software and tested through RTDS experiment. Both simulation and RTDS test results verify the analysis.

Redundancy Module Operation Analysis of MMC using Scaled Hardware Model (축소모형을 이용한 MMC의 Redundancy Module 동작분석)

  • Yoo, Seung-Hwan;Shin, Eun-Suk;Choi, Jong-Yun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제63권8호
    • /
    • pp.1046-1054
    • /
    • 2014
  • In this paper, a hardware prototype for the 10kVA 11-level MMC was built and various experimental works were conducted to verify the operation algorithms of MMC. The hardware prototype was designed using computer simulation with PSCAD/EMTDC software. After manufactured in the lab, the hardware prototype was tested to verify the modulation algorithms to form the output voltage, the balancing algorithm to equalize the sub-module capacitor voltage, and the redundancy operation algorithm to improve the system reliability. The developed hardware prototype can be utilized for analyzing the basic operation and performance improvement of MMC according to the modulation and redundancy operation scheme. It also can be utilize to analyze the basic operational characteristics of HVDC system based on MMC.

Simulation of the Distance Relay Using EMTP MODELS

  • J.Y. Heo;Kim, C.H.;R.K. Aggarwal
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권1호
    • /
    • pp.26-32
    • /
    • 2004
  • Digital technology has advanced significantly over the years both in terms of software tools and hardware availability. It is now applied extensively throughout many area of electrical engineering including protective relaying in power systems. Digital relays have numerous advantages over traditional analog relays, such as the ability to accomplish what is difficult or impossible using analog relays. Although non real-time simulators like PSCAD/EMTDC are employed to test the algorithms, such simulations are disadvantaged in that they cannot test the relay dynamically. Hence, real-time simulators like RTDS are used. However, the latter requires large space and is very expensive. This paper uses EMTP MODELS to simulate the power system and the distance relay. The distance relay algorithm is implemented and the distance relay is interfaced with a test power system. The distance relay's performance is then assessed interactively under various fault types, fault distances and fault inception angles. The test results show that we can simulate the distance relay effectively and we can examine the operation of the distance relay very closely including its drawbacks/limitations by using EMTP MODELS. Equally important, this approach facilitates any changes that need to be carried out in order to enhance the Distance Relay under test/examination.

S-Domain Frequency Dependent Network Equivalent for Electromagnetic Transient and Harmonic Assessment (전자기 과도현상 해석과 고조파 평가를 위한 S영역 주파수 의존 등가시스템 개발)

  • Wang, Y.P.;Chong, H.H.;Lee, J.T.;Han, H.H.;Kim, H.J.;Chong, D.I.;Kwak, N.H.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.143-144
    • /
    • 2006
  • The recent power systems are very complex and to model them completely is impractical for analysis of electromagnetic transient Therefore areas outside the immediate area of interest must be represented by some form of Frequency Dependent Network Equivalent (FDNE). In this paper a method for developing Frequency Dependent Network Equivalent (FDNE) using S-domain rational Function Fitting is presented and demonstrated. The FDNE is generated by Linearized Least Squares Fitting(LSF) of the frequency response of a S-domain formulation. This Three-port FDNE have been applied to the test AC power system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the Three-port FDNE developed under different condition. The study results have indicated the robustness and accuracy of Three-port FDNE for analisys of electromagnetic transient and harmonic assessment.

  • PDF

Compensation of voltage drop and improvement of power quality at AC railroad system with single-phase distributed STATCOM (단상 배전 STATCOM을 이용한 전기철도시스템의 전압강하 및 전력품질 향상)

  • Kim, Jun-Sang;Kim, Jin-O;Lee, Jun-Kyung;Jung, Hun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.192-193
    • /
    • 2006
  • An AC electrical railroad system has rapidly changing dynamic single-phase load, and at a feeding substation, three-phase electric power is transformed to the paired directional single-phase electric power. There is a great difference in electrical phenomenon between the load of AC electrical railroad system and that of general power system. Electric characteristics of AC electrical railroad's trainload are changed continuously according to the traction, operating characteristic, operating schedule, track slope, etc. Because of the long feeding distance of the dynamic trainload, power quality problems such as voltage drop, voltage imbalance and harmonic distortion may also occur to AC electrical railroad system. These problems affect not only power system stability. but also power quality deterioration in AC electrical railroad system. The dynamic simulation model of AC electrical railroad system presented by PSCAD/EMTDC is modeled in this paper, and then, it is analyzed voltage drop and power quality for AC electrical railroad system both with single-Phase distributed STATCOM(Static Synchronous Compensator) installed at SP(Sectioning Post) and without.

  • PDF

Z-Domain Frequency Dependent Network Equivalent for Electromagnetic Transient and Harmonic Assessment (전자기 과도현상 해석과 고조파 평가를 위한 Z영역 주파수 의존 등가시스템 개발)

  • Wang, Y.P.;Chong, H.H.;Kim, K.Y.;Lee, J.T.;Han, H.H.;An, B.C.;Jeon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.145-146
    • /
    • 2006
  • The recent power systems are very complex and to model them completely is impractical for analysis of electromagnetic transient. Therefore areas outside the immediate area of interest must be represented by some form of Frequency Dependent Network Equivalent (FDNE). In this paper a method for developing Frequency Dependent Network Equivalent (FDNE) using Z-domain rational Function Fitting is presented and demonstrated. The FDNE is generated by Linearized Least Squares Fitting(LSF) of the frequency response of a Z-domain formulation. This Three-port FDNE have been applied to the test AC power system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the Three-port FDNE developed under different condition. The study results have indicated the robustness and accuracy of Three-port FDNE for analisys of electromagnetic transient and harmonic assessment.

  • PDF

A Study for Fault Location Scheme Using the 9-Conductor Modeling of Korean Electric Railway System (9도체 전기철도 모델링을 이용한 고장점 표정 방안 연구)

  • Lee, Han-Sang;Lee, Chang-Mu;Lee, Han-Min;Jang, Gil-Soo;Chang, Sang-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.411-413
    • /
    • 2006
  • This paper presents a novel fault location scheme on Korean AC electric railway systems. On AC railway system, because there is a long distance, 40 km or longer, between two railway substations, a fault location technique is very important. Since the fault current flows through the catenary system, the catenary system must be modeled exactly to analyze fault current magnitude and fault location. In this paper, before suggestion for the novel scheme of fault location, a 9-conductor modeling technique that includes boost wires and impedance bonds is introduced, based on the characteristics of Korean AC electric railway. After obtaining a 9-conductor modeling, the railway system is constructed for computer simulation by using PSCAD/EMTDC. By case studies, we can verify superiority of a new fault location scheme and suggest a powerful model for fault analysis on electric railway systems.

  • PDF