• Title/Summary/Keyword: EMI absorbers

Search Result 14, Processing Time 0.025 seconds

Broad-Band Design of Ferrite One-body EM Wave Absorbers for an Anechoic Chamber

  • Kim, Dong-Il;Son, June-Young;Park, Woo-Keun;Park, Dong-Han
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.51-55
    • /
    • 2004
  • With the progress of the electronics industry and radio communication technology, certain problems, such as electromagnetic interference(EMI), have arisen due to the increased use of electromagnetic(EM) waves. International organizations such as CISPR, FCC, and ANSI have provided the standards for the EM wave environment and for the countermeasure of the electromagnetic compatibility(EMC). EM wave absorbers are used for constructing an anechoic chamber to test and measure EMI and electromagnetic susceptibility(EMS). In this paper, we have designed an one-body EM(electromagnetic) wave ferrite absorber, based on the equivalent material constants method for both normally and obliquely incident waves, whose absorption abilities are superior to that of the conventional ones. The fabricated absorber has a thickness of 27.68 mm and shows an absorption ability over 20 ㏈ in the frequency from 30 MHz to 6 ㎓.

Broad-Band Design of Ferrite Absorbers in Cross-Shaped Projection Type (십자돌기형 페라이트 전파흡수체의 광대역 설계)

  • 김동일;박종구;원영수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.372-378
    • /
    • 2000
  • The remarkable progress of electronics and radio communications technology has made our life abundant. On the other hand, the countermeasure of EMC becomes more important socially according to the increased use of electromagnetic waves. It had been required that the absorbing ability of an electromagnetic wave absorber is more than 20 dB, the bandwidth of which is required through 30 MHz to 1,000 MHz for satisfying the international standard about an anechoic chamber for EMI/EMS measurement. From November of 1998, however, the CISPR11 has accepted the extended frequency band from 30 MHz to 18 GHz in the bandwidth of EMI measurement. In this paper, we proposed the cross-shaped type and tapered cross-shaped type absorbers satisfying the above requirments and carried out broadband design using the equivalent material constants method. Futheremore, the results have been compared with FEM, and FDTD.

  • PDF

Dielectric/Magnetic Nanowires Synthesized by the Electrospinning Method for Use as High Frequency Electromagnetic Wave Absorber

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.14-14
    • /
    • 2009
  • High frequency electromagnetic(EM) waves are increasingly being applied in industries because of saturationat lower frequency bands as a result of huge demand. However, electromagneticinterference (EMI) has become a serious problem, and as a result, highfrequency EM absorbers are now being extensively studied. Also, recentdevelopments in absorber technology have focused on producing absorbers thatare thin, flexible, and strong. Hence, one-dimension ferrous nano-materials area potential research field, because of their interesting electronic andmagnetic properties. Commercially, EM wave absorbing products are made ofcomposites, which blend the insulating polymer with magnetic fillers. Inparticular, the shape of the magnetic fillers, such flaky, acicular, or fibrousmagnetic metal particles, rather than spherical, is essential for synthesizingthin and lightweight EM wave absorbers with higher permeability. High aspectratio materials exhibit a higher permeability value and therefore betterabsorption of the EM wave, because of electromagnetic anisotropy. Nanowires areusually fabricated by drawing, template synthesis, phase separation, selfassembly, and electrospinning with a thermal treatment and reduction process.Producing nanowires by the electrospinning method involves a conventionalsol-gel process that is simple, unique, and cost-effective. In thispresentation, Magnetic nanowire and dielectric materials coated magneticnanowire with a high aspect ratio were successfully synthesized by theelectrospinning process with heat treatment and reduction. In addition toestimating the EM wave absorption ability of the synthesized magnetic anddielectric materials coated magnetic nanowire with a network analyzer, weinvestigated the possibility of using these nanowires as high-frequency EM waveabsorbers. Furthermore, a wide variety of topics will be discussed such as thetransparent conducting nanowire and semiconducting nanowire/tube with theelectrospinning process.

  • PDF

Electromagnetic Properties of Siver Coated Iron based Alloy Powders Prepared by Chemical Reduction Method

  • Lee, Byoung-Yoon;Lee, Jae-Wook;Yun, Yeo-Chun;Jeong, In-Bum;Moon, Joo-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1213-1214
    • /
    • 2006
  • The synthesis of silver coated iron base alloy (Sendust : Fe-Si-Al) powder having the both effects of shielding and suppressing of electromagnetic wave was studied. Depending on thickness of silver coating layer, the electromagnetic properties of the dispersed particles complexed with organic binder were examined. It is proposed that the silver coated sendust flake powders with controlled electrical properties and thickness can be used as thin microwave absorbers in quasi-microwave frequency band.

  • PDF

Analysis of Electromagnetic Wave Absorbers for Applying Magnetic Levitation (자기부상체 적용을 위한 전자파 흡수체의 특성 분석)

  • Seo, Yong-beom;Kang, Hyun-il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • EMC (Electro Magnetic Compatibility) of the electrical railway must be ensured for safety of passenger. Maglev trains has not friction between the wheels and the rails because levitation by an permanent magnets, electromagnets and superconducting magnets etc. So, it is advantageous to maintain a high speed without noise and vibrations. In this paper, we investigated that the magnetic field of the before and after installation electromagnetic waves absorber in order to analyze the effects of electromagnetic waves. The theoretical analysis of the electromagnetic wave absorber was simulated using finite element method. The magnetic field properties of electromagnetic waves absorber were measured by EMI (Electro Magnetic Interference) test receiver.

A Study on Broadband Design of EM Wave Absorber for Anechoic Chamber

  • Kim, Dong-Il;Son, June-Young;Weon, Young-Su;Ku, Dong-Woo;Kim, Ki-Man;Song, Jae-Man;Yea, Byeong-Deok
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.16-21
    • /
    • 2002
  • On the contrary to the progress of the electronic industry and radio communication technologies, many social problems such as EMI, due to unnecessary electromagnetic(EM) wave are serious with the increased use of EM wave. It is required that the absorbing capability of an EM wave absorber is more than 20 dB, the bandwidth of which is required from 30 MHz to 18 GHz to satisfy the international standard about an anechoic chamber for EMI/EMS measurement$^{[1]}$TEX>. However, the absorbing frequency band of the conventional EM wave absorbers satisfying more than 20 dB is very narrow, for examples, from 30 MHz to 400 MHz in ferrite tile type and from 30 MHz to 870 MHz in ferrite grid type, respectively. In this paper, we proposed and designed a new tripe absorber with broadband characteristics covering the frequency band from 30 MHz to 10 GHz by use of the equivalent material constants method (EMCM)$^{[2]~[4]}$TEX>.

Development of Broad-band Electromagnetic Wave Aborbers in Cut Corn and Cylinder Types (원추절단형 및 원기둥형 광대역 페라이트 전파흡수체 개발에 관한 연구)

  • 김동일;박종구;원영수;이영구;정세모
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.900-906
    • /
    • 2000
  • The remarkable progress of electronics and radio communications technology has made our life abundant. On the other hand, the countermeasure of EMl/EMC becomes more important socially according to the increased use of electromagnetic waves. It had been required that the absorbing ability of an electromagnetic wave absorber is more than 20 dB, the bandwidth of which is required through 30 MHz to 1,000 MHz for satisfying the international standard about an anechoic chamber for EMl/EMS measurement. From November of 1998, however, the CISPR11 has accepted the extended frequency band to 18 GHz in the bandwidth of EMI measurement. In this paper, we proposed the cut corn type and cylinder type absorbers satisfying the above requirments and carried out broadband design using the equivalent material constants method.

  • PDF

Application of Transformation Electromagnetics to Cloak Design and Reduction of Radar Cross Section

  • Mittra, Raj;Zhou, Yuda
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • In this paper we present an alternative approach to addressing the problem of designing cloaks for radar targets, which have been dealt with in the past by using the transformation optics (TO) algorithm. The present design utilizes realistic materials, which can be fabricated in the laboratory, and are wideband as well as relatively insensitive to polarization and incident angle of the incoming wave. The design strategy, presented herein, circumvents the need to use metamaterials for cloak designs that are inherently narrowband, dispersive and highly sensitive to polarization and incident angle. A new interpretation of the TO algorithm is presented and is employed for the design of radar cross section-reducing absorbers for arbitrary targets, and not just for canonical shapes, e.g., cylinders. The topic of performance enhancement of the absorbers by using graphene materials and embedded frequency structure surfaces is briefly mentioned. The design procedure for planar absorbing covers is presented and their performance as wrappers of general objects is discussed. A number of test cases are included as examples to illustrate the application of the proposed design methodology, which is a modification of the classical TO paradigm.

Effects of Sintering Schedule of Ni-Zn Ferrites on Properties of Electromagnetic Wave Absorber between 30 MHz and 1000 MHz (30 MHz~1000 MHz 고주파 대역에서 Ni-Zn 계 페라이트의 소결조건에 따른 전파흡수 특성)

  • 김경용;김왕섭;주윤돈
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.640-646
    • /
    • 1991
  • Recently intensive studies have been focussed on ferrites which have high magnetic loss because of the increasing need for the prevention of EMI (Electromagnetic Interference). We investigated effects of microstructures of Ni-Zn ferrites on magnetic losses, magnetic properties, and behaviors of electromagnetic wave absorbers. The characteristics of the absorber were influenced by the sintering conditions. A Ni-Zn ferrite with the thickness of 7$^{\circ}C$/min and the cooling rate of 7$^{\circ}C$/min. It satisfied the absorbing properties in the wide frequency ranges including VHF (90∼220 MHz), UHF (470∼770 MHz)

  • PDF

A Study on Development of the EM Wave Absorber for ETC System

  • Park, Soo-Hoon;Kim, Dong-Il;Song, Young-Man;Yoon, Sang-Gil
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.2
    • /
    • pp.70-75
    • /
    • 2008
  • In this paper, the EM wave absorber was designed and fabricated for countermeasure against EMI from a ceiling of a tollgate in ETC system. We fabricated several samples in different composition ratios of MnZn-ferrite, Carbon, and CPE(Chlorinated Polyethylene). Absorption abilities were simulated in accordance with different thicknesses of the prepared absorbers and changed complex relative permittivity and permeability according to composition ratio. The optimized mixing ratio of MnZn-ferrite, Carbon, and CPE was found as 40:15:45 wt.% by experiments and simulation. Then the EM wave absorber was fabricated and tested using the simulated data. As a result, the developed EM wave absorber has the thickness of 3.3 mm and absorption ability was more than 20 dB in the case of normal incidence and more than 11 dB for the incident angle from 15 to 45 degrees at 5.8 GHz. Therefore, it was confirmed that the newly developed absorber can be used for ETC system.