• Title/Summary/Keyword: EMG-to-force

Search Result 187, Processing Time 0.024 seconds

A EMG Signal Processing Algorithm for SMUAP Pattern Classification (SMUAP의 패턴분류를 위한 근 신호처리 알고리듬)

  • Lee, Jin;Jo, Il-Jun;Byun, Youn-Shik;Hong, Woan-Hue;Kim, Sung-Hwan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.106-111
    • /
    • 1989
  • A new EMG signal processing algorithm for SMUAP pattern classification is proposed. It checks the combination and regularity of ISI using a spike counter as a decision making routine, and performs SMUAP waveform alignment in frequency domain and selects spikes through FIR filtering. As a result, with the EMG signals recorded during 5 seconds at 10-50% MVC force level, the SMUAP ranged from five to nine units were classified and identification rate is greater than 55 percent using a concentric needle electrode. In the IBM PC/AT the processing time typically required 2 minutes.

  • PDF

The Influence of the Pattern of Gripping the Ultrasound Head on the Activity of Upper Limb Muscles (초음파 도자를 쥐는 방법이 팔 근육의 근활성도에 미치는 영향)

  • Choi, Seok-Ho;Yi, Chung-Hwi;Jeon, Hye-Sun;Lee, Jeong-Weon
    • Physical Therapy Korea
    • /
    • v.20 no.2
    • /
    • pp.28-37
    • /
    • 2013
  • This study examined differences in the activity of upper limb muscles according to how an ultrasound head is gripped. Twenty-two adult males were participated in the study. Each participant was asked to apply ultrasound treatment on to a lump of pork meat by two different ultrasound head grip patterns: spherical and cylindrical grips. Muscle activity was measured in the extensor carpi radialis longus (ECRL), flexor carpi ulnaris (FCU), and pronator teres (PT), triceps brachii (TB), middle deltoid (MD), and upper trapezius (UT) muscles. There were no significant differences in the EMG signals of any muscle according to the ultrasound head grip pattern (p>.05). There were significant differences in the EMG signal of each type of muscle (p<.05). The EMG signal of UT was the lowest and that of TB was lower than ECRL and FCU. There were interactions between ECRL and FCU, between ECRL and PT, between FCU and ECRL, and between FCU and MD. The EMG signal of ECRL using the cylindrical head was low and that of FCU with the cylindrical head was high, while the opposite was the case with the spherical head ($p_{adj}$ <.05/15). The results of this study indicate that the wrist muscles worked actively when the participants applied ultrasound therapy using both spherical and cylindrical heads. A spherical head might induce imbalanced muscle activity among the wrist muscles, leading to deviation of the wrist joint. Therefore, the cylindrical head is recommended for ultrasound therapy because it produced a constant, repeated force.

The Effect of External Pelvic Compression on Shoulder and Lumbopelvic Muscle sEMG and Strength of Trunk Extensor During Push Up Plus and Deadlift Exercise (푸쉬업플러스와 데드리프트 운동 시 골반압박이 견관절과 요골반부 주위근의 근활성도와 체간 신전근 근력에 미치는 영향)

  • Huang, Tian-zong;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.25 no.3
    • /
    • pp.1-11
    • /
    • 2018
  • Background: Lumbopelvic stability is highly important for exercise therapy for patients with low back pain and shoulder dysfunction. It can be attained using a pelvic compression belt. Previous studies showed that external pelvic compression (EPC) enhances form closure by reducing sacroiliac joint laxity and selectively strengthens force closure and motor control by reducing the compensatory activity of the stabilizer. In addition, when the pelvic compression belt was placed directly on the anterior superior iliac spine, the laxity of the sacroiliac cephalic joint could be significantly reduced. Objects: This study aimed to compare the effects of EPC on lumbopelvic and shoulder muscle surface electromyography (EMG) activities during push-up plus (PUP) and deadlift (DL) exercise, trunk extensor strength during DL exercise. Methods: Thirty-eight subjects (21 men and 17 women) volunteered to participate in this study. The subjects were instructed to perform PUP and DL with and without the EPC. EMG data were collect from serratus anterior (SA), pectoralis major (PM), erector spinae (ES), and multifidus (MF). Trunk extensor strength were tested in DL exercise. The data were collected during 3 repetitions of all exercise and the mean of root mean square was used for analysis. Results: The EMG activities of the SA and PM were significantly increased in PUP with pelvic compression as compared with PUP without pelvic compression (p<.05). In DL exercise, a significant improvement in trunk extensor strength was observed during DL exercise with pelvic compression (p<.05). Conclusion: The results of this study indicate that lumbopelvic stabilization reinforced with external pelvic compression may be propitious to strengthen PUP in more-active SA and PM muscles. Applying EPC can improve the trunk extensor strength during DL exercise. Our study shows that EPC was beneficial to improve the PUP and DL exercise efficiency.

AN INTEGRATED EMG STUDY OF RELATIONSHIPS BETWEEN PREFERRED CHEWING AND SIDE OF INITIAL MUSCLE PAINS (습관적(習慣的) 저작(咀嚼)과 저작근(咀嚼筋)의 동통유발(疼痛誘發)과의 관계에 대한 근전도학적(筋電圖學的) 연구(硏究))

  • Lee, Sung-Bok;Choi, Dae-Gyun;Choi, Boo-Byung;Park, Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.24 no.1
    • /
    • pp.165-176
    • /
    • 1986
  • The purpose of this study was to investigate electromyographically the relationship between preferred chewing side and side of initial muscle pains. In this study, 20 normal healthy subjects were selected , and each subject chewed randomly chewing gum for 20 minutes to establish preferred chewing side. To induce initial muscle pains, biting force of 10Kg on the gnathodynamometer was maintained by the subjects. And the Bioelectric processor EM2(Myo-Ironies Research, Inc. U.S.A.) with the surface electrodes was used to record the EMG activity during all experimental procedures. The results were as follows; 1. A majority of the present subjects (60%) had a preferred chewing side, but with few exceptions, subjects were unable to explain why a given side was preferred; explanations were only 'comfort' and 'habit' 2. The chewing, or working side was determined largely by the mean voltage of the surface electromyogram (EMG); in comparison with EMG from the non-wlring (contralateral) side, the working (ipsilateral) side showed a higher amplitude. 3. After the effort, the right masseter muscle is the most frequent site of pains, followed by the left masseter muscle, the anterior part of the right temporalis muscle and tile anterior part of the left temporalis muscle. 4. After the effort, mean voltages of masseter muscles were slightly increased, but mean voltages of temporalis anterior were slightly decreased at physiologic rest position. 5. No relationships could be established between preferred chewing side and side of initial muscle pains.

  • PDF

의료용재료의 최근 개발현황

  • 김영하
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 1989
  • The intelligent trajectory control method that controls moving direction and average velocity for a prosthetic arm is proposed by pattern recognition and force estimations using EMG signals. Also, we propose the real time trajectory planning method which generates continuous accelleration paths using 3 stage linear filters to minimize the impact to human body induced by arm motions and to reduce the muscle fatigue. We use combination of MLP and fuzzy filter for pattern recognition to estimate the direction of a muscle and Hogan`s method for the force estimation. EMG signals are acquired by using a amputation simulator and 2 dimensional joystick motion. The simulation results of proposed prosthetic arm control system using the EMf signals show that the arm is effectively followed the desired trajectory depended on estimated force and direction of muscle movements.

  • PDF

Characteristics of the Fatigue Index in EMG Power Spectrum Analysis During Isokinetic Exercise (등속성 운동 시 근전도 주파수 분석에서 얻은 피로지수의 특성)

  • Won, Jong-Im;Cho, Sang-Hyun;Yi, Chung-Hwi;Kwon, Oh-Youn;Lee, Young-Hee;Park, Jung-Mi
    • Physical Therapy Korea
    • /
    • v.8 no.3
    • /
    • pp.11-26
    • /
    • 2001
  • In rehabilitation programs involving muscle re-education and endurance exercise, it is necessary to confirm when fatigue occurs. It is also necessary to quantify fatigue, to confirm whether the muscle has been exercised sufficiently. In general, as fatigue occurs, the force-generating ability of the muscle is reduced. If the median frequency (MDF) obtained from electromyogram (EMG) power spectrum is correlated highly with work, then the timing and degree of fatigue may be confirmed. This study examined the relationship between work and MDF obtained from the EMG power spectrum during repetitive isokinetic exercise. Surface EMG signals were collected from biceps brachii and vastus lateralis of 52 normal subjects (26 males, 26 females) at $120^{\circ}/sec$ and $60^{\circ}/sec$ while performing an isokinetic exercise. The exercise was finished at 25% of peak work. MDF data was obtained using a moving fast Fourier transformation (FFT), and random noise was removed using the inverse FFT, then a new MDF data was obtained from the main signal. There was a high correlation between work and MDF during repetitiv isokinetic exercise in the biceps brachii and vastus lateralis of males and the biceps brachii of females (r=.50~.77). However, there was a low correlation between work and MDF in the vastus lateralis of females (r=.06~.19).

  • PDF

Biomechanical Gait Analysis and Simulation on the Normal, Cavus and Flat Foot with Orthotics (Orthotics 착용에 따른 정상, 요족, 평발의 생체역학적 보행분석 및 시뮬레이션)

  • Lee, Jung-Hyun;Lee, Jae-Ok;Park, Soung-Ha;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1115-1123
    • /
    • 2007
  • The foot plays an important role in supporting the body and keeping body balance. An abnormal walking habit breaks the balance of the human body as well as the function of the foot. The foot orthotics which is designed to consider biomechanics effectively distributes the load of the human body on the sole of the foot. In this paper, gait analysis was performed for three male subjects wearing the orthotics. In this study, three male subjects were selected. The experimental apparatus consists of a plantar pressure analysis system and digital EMG system. The gait characteristics are simulated by ADAMS/LifeMOD. The COP (Center of Pressure), EMG and ground reaction force were investigated. As a result of gait analysis, the path of COP was improved and muscle activities were decreased with orthotics on the abnormal walking subjects.

Ergonomic Evaluation of Biomechanical Hand Function

  • Lee, Kyung-Sun;Jung, Myung-Chul
    • Safety and Health at Work
    • /
    • v.6 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • The human hand is a complex structure that performs various functions for activities of daily living and occupations. This paper presents a literature review on the methodologies used to evaluate hand functions from a biomechanics standpoint, including anthropometry, kinematics, kinetics, and electromyography (EMG). Anthropometry describes the dimensions and measurements of the hand. Kinematics includes hand movements and the range of motion of finger joints. Kinetics includes hand models for tendon and joint force analysis. EMG is used on hand muscles associated with hand functions and with signal-processing technology.

Correlation among Functional Leg Length Discrepancy, Muscle Activity, Muscle Contraction Onset Time and Vertical Ground Reaction Force during Simple Lifting Task

  • Jin, Ha Young;Han, Jin Tae
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.4
    • /
    • pp.175-180
    • /
    • 2022
  • Purpose: Leg length discrepancy causes the posture deformation, gait asymmetry, and lower back pain. The purpose of this study is to investigate the correlation among functional leg length discrepancy (FLLD), muscle activity, muscle contraction onset time and vertical ground reaction force (vGRF) during simple lifting task. Methods: Thirty-nine subjects participated in this study. FLLD was measured from the umbilicus to medial malleolus of left and right leg using a tape. The subjects performed to lift a 10 kg box from the floor to chest. The muscle activity and muscle contraction onset time of rectus abdominis, erector spinae and rectus femoris was measured using EMG system and vGRF was measured by two force plate. Pearson correlation was used to fine out the correlation among FDDL, muscle activity, muscle contraction onset time and vGRF during simple lifting task. Results: Correlation between FLLD and difference of muscle activity of short-long side was very high (r>0.9) during simple lifting task. Correlation between FLLD and difference of muscle contraction onset time of short-long side was very high (r>0.9) during simple lifting task. And correlation between FLLD and difference of vGRF of short-long side was high (r>0.7) during simple lifting task. Conclusion: This study suggests that there is high correlation between FLLD and muscle activity, muscle contraction onset time, and ground reaction force during simple lifting task. Therefore, FLLD could negatively affect the postural balance.

Evaluation for Biomechanical Effects of Metatarsal Pad and Insole on Gait (보행 중 중족골 패드와 인솔의 생체역학적 영향성 평가)

  • Choi, Jung-Kyu;Park, In-Sik;Lee, Hong-Jae;Won, Yong-Gwan;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.487-494
    • /
    • 2011
  • The purpose of this study was to evaluate the effects of metatarsal pad (MP) compared with barefoot and MP with using different insoles on gait. 15 healthy females who had no history of injury in the lower extremity with an average age of 22.7 year(SD=1.35), height of 160 cm(SD=3.4), weight of 48.8 kg(SD=5.52) and average foot size of 232.5 mm(SD=6.8) participated in this study as the subjects. The subjects walked on a treadmill under four different experimental conditions: 1) walking with barefoot, 2) walking wearing MP 3) walking wearing a soft insole with MP(SIMP), 4) walking wearing a rigid insole with MP(HIMP). During walking, foot pressure data such as force, contacting area, peak pressure, and mean pressure was collected using Pedar-X System(Novel Gmbh, Germany) and EMG activity of lower limb muscles such as tibialis anterior(TA), lateral gastrocnemius(LG), rectus femoris(RF), and musculus biceps femoris(MBF) was gathered using Delsys EMG Work System(Delsys, USA). Collected data was then analyzed using paired t-test in order to investigate the effects of each of experimental conditions. As a result of the analysis, when MP and HIMP were equipped, overall contacting area was increased while the force, peak pressure and the mean pressure were decreased. Especially, when the SIMP was equipped, every data were significantly decreased. In case of EMG, wearing MP, SIMP and HIMP made three muscles(TA, LG, RF)'s activity decrease. A result of the analysis will be able to apply for manufacturing functional shoes, diabetes shoes, senior shoes and lower extremity orthosis. Significance of the study due to a metatarsal pad and the insole is to analyze the changes in muscle strength.