• Title/Summary/Keyword: EMG data

Search Result 453, Processing Time 0.022 seconds

EMG Activities of Trunk and Lower Extremity Muscles Induced by Different Intensity of Whole Body Vibration During Bridging Exercise

  • Kim, Tack-Hoon;Choi, Houng-Sik
    • Physical Therapy Korea
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2009
  • The purpose of this study was to investigate the trunk and lower extremity muscle activity induced by three different intensity conditions (intensity 1, 3, 5) of whole body vibration (WBV) during bridging exercise. Surface electromyography (EMG) was used to measure trunk and lower extremity muscles activity. Eleven healthy young subjects (6 males, 5 females) were recruited from university students. The collected EMG data were normalized using reference contraction (no vibration during bridging) and expressed as a percentage of reference voluntary contraction. To analyze the differences in EMG data, the repeated one-way analysis of variance was used. A Bonferroni's correction was used for multiple comparisons. The study showed that EMG activity of the rectus abdominis, external oblique, internal oblique, erector spinae and rectus femoris muscles was not significantly different among three intensity conditions of WBV during bridging exercise (p>.05). However, there were significantly increased EMG activity of the medial hamstring muscle (p=.001) and medial gastrocnemius muscle (p=.027) in the intensity 3 condition compared with the intensity 1 condition. This result can be interpreted that vibration was absorbed through the distal muscles, plantar flexor and knee flexor.

  • PDF

Eletromyographic Activities of Trunk and Lower Extremity Muscles During Bridging Exercise in Whole Body Vibration and Swiss Ball Condition in Elderly Women

  • Kim, Tack-Hoon;Lee, Kang-Seong
    • Physical Therapy Korea
    • /
    • v.17 no.4
    • /
    • pp.26-34
    • /
    • 2010
  • The purpose of this study was to compare the trunk and lower extremity muscle activity induced by six different conditions floor, intensity 0, 1, 3, 5 of whole body vibration (WBV), and Swiss ball during bridging exercise. Surface electromyography (EMG) was used to measure trunk and lower extremity muscles activity. Ten elderly women were recruited from Hong-sung Senior Citizen Welfare Center. The collected EMG data were normalized using reference contraction (during floor bridging) and expressed as a percentage of reference voluntary contraction (%RVC). To analyze the differences in EMG data, the repeated one-way analysis of variance was used. A Bonferroni's correction was used for multiple comparisons. The study showed that EMG activity of the rectus abdominis, external oblique, internal oblique, erector spinae and rectus abdominis muscles were not significantly different between six different conditions of during bridging exercise (p>.05). However, there were significantly increased EMG activity of the rectus femoris (p=.034) in the WBV intensity 0, 1, 3, and 5 conditions compared with the floor bridging condition. EMG activity of the medial gastrocnemius were significantly increased in the WBV intensity 0, 1, 3, 5 and Swiss ball conditions compared with the floor bridging condition. Future studies are required the dynamic instability condition such as one leg lifting in bridging.

Comparison of the VMO/VL EMG Activity Ratio According to Resistance Condition in Partial Lunge Exercise

  • Nam, Ki-Seok
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.5
    • /
    • pp.273-276
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the effects of the resistance conditions on the electromyography (EMG) activity ratio of vastus medialis oblique (VMO) and vastus lateralis (VL) muscle during partial lunge exercise in healthy subjects in order to suggest the basic data of exercise intervention for such as patients with patellofemoral pain syndrome (PFPS). Methods: The participants of this study were healthy twenty two people with no knee pain, limitation of motion and past history of operation at lower extremity. The participants performed three types of lunge 1) no resistance, 2) anterolateral 45° resistance and 3) lateral 90° respectively. The EMG activity of the VMO and VL were recorded by surface EMG and the measured data normalized by the %MVIC value was analyzed by repeated measured ANOVA. Results: The results showed that the VMO/VL EMG activity ratio during lunge with anterolateral 45° resistance was significantly higher than with no resistance and lateral 90° resistance (p<0.05). There was no significant difference in VMO, VL, and VMO/VL muscle activity between male and female subjects (p>0.05). Conclusion: This study suggests that partial lunge exercise with anterolateral 45° resistance can increase the VMO/VL muscle activity in healthy subjects. This result could be used as basic data to develop therapeutic exercise programs such as PFPS patients.

The Study on Effect of sEMG Sampling Frequency on Learning Performance in CNN based Finger Number Recognition (CNN 기반 한국 숫자지화 인식 응용에서 표면근전도 샘플링 주파수가 학습 성능에 미치는 영향에 관한 연구)

  • Gerelbat BatGerel;Chun-Ki Kwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.51-56
    • /
    • 2023
  • This study investigates the effect of sEMG sampling frequency on CNN learning performance at Korean finger number recognition application. Since the bigger sampling frequency of sEMG signals generates bigger size of input data and takes longer CNN's learning time. It makes making real-time system implementation more difficult and more costly. Thus, there might be appropriate sampling frequency when collecting sEMG signals. To this end, this work choose five different sampling frequencies which are 1,024Hz, 512Hz, 256Hz, 128Hz and 64Hz and investigates CNN learning performance with sEMG data taken at each sampling frequency. The comparative study shows that all CNN recognized Korean finger number one to five at the accuracy of 100% and CNN with sEMG signals collected at 256Hz sampling frequency takes the shortest learning time to reach the epoch at which korean finger number gestures are recognized at the accuracy of 100%.

A Research on BCI using Coherence between EEG and EMG (EEG와 EMG의 Coherence을 이용한 BCI 연구)

  • Kim, Young-Joo;Whang, Min-Cheol;Kang, Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.9-14
    • /
    • 2008
  • Coherence can be used to evaluate the functional cortical connections between the motor cortex and muscle. This study is to find coherence between EEG (electroencephalogram) and EMG (electromyogram) evoked by movement of a hand. Seven healthy participants were asked to perform thirty repetitive movement of right hand for ten seconds with rest for ten seconds. Specific feature of EEG components has been extracted by ICA (independent component analysis) and coherence between EEG and EMG was analyzed from data measured EEG in five local areas around central part of head and EMG in flexer carpri radialis muscle during grabbing movement. Coherence between EEG and EMG was successfully obtained at 0.025 confidence limit during hand movement and showed significant difference between rest and movement at 13-18Hz.

An EMG Study of the Feature 'Tensity'

  • Kim, Dae-Won
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.5 no.1
    • /
    • pp.22-28
    • /
    • 1994
  • Previous studies reveal that in English there is no EMG evidence fur the feature tense-lax distinction. The technique of electro-myography(EMG) was used to see if the existing claim holds true, particularly in unstressed syllable. It was found that in unstressed syllable, the peak EMG amplitude from the orbicularis oris superior muscle was significantly greater in /p/ than in /b/, while in stressed syllable this difference was negligible. It was hypothesized that in stressed syllable, /p/ and /b/ may be differentiated by the EMG activities from a muscle other than the orbicularis oris superior muscle, e.g. the respiratory muscles relating to 'aspiration' or depressor anguli oris muscle. In Korean, there was a clear labial gestures for the feature tense-lax distinction. The phoneme-sensitive manifestation of stress and some possible reasons for the inter-speaker variability in the data and the variability within a given speaker were discussed.

  • PDF

Difference of Lumbar & Lower Extremity Muscle Activity when Patients are Transferred by Physical Therapists

  • Hur, Jin-Gang;Park, Chong-Uk;Lee, Ju-Sang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.613-619
    • /
    • 2011
  • Objective: The purpose of this study is to compare the muscle activities of lumbar and lower extremity muscles between left and right sides using EMG(Electromyogram) when patients are transferred by physical therapists. Background: Asymmetrical lift was recognized as a major cause of musculoskeletal disorder. Several studies show that physical therapists' transferring patients needs caution as it could cause a lumbar pain to patients but there is not sufficient data to support. Method: Forty healthy rehabilitation hospital physical therapists joined for this study. The subjects were transferred from wheelchair to treatment mat(from left to right) by connecting the EMG device to the patients' body both on erector spine and rectus fermoris. At the moment when subjects were being transferred, the EMG device collected data from both erector spine and rectus femoris and it was normalized as %MVC. Then the EMG data was statistically analyzed using paired t-tests. Results: The EMG data show that the left erector spinae and rectus femoris are more activated than right erector spinae and rectus femoris in all position(p<.05) in a significant degree. Conclusion: The result implies that physical therapists' asymmetrical lifting when patients are transferred by them has a potential cause of musculoskeletal disorder of patients. Further studies will be conducted to find out a same tendency in other muscles of a body and to see if there are other factors to affect to patients during asymmetrical lifting. Application: These results can be used to provide baseline information for more understanding to asymmetrical lift loading.

Autonomous Mobile Robot Control using the Wearable Devices Based on EMG Signal for detecting fire (EMG 신호 기반의 웨어러블 기기를 통한 화재감지 자율 주행 로봇 제어)

  • Kim, Jin-Woo;Lee, Woo-Young;Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.176-181
    • /
    • 2016
  • In this paper, the autonomous mobile robot control system for detecting fire was proposed using the wearable device based on EMG(Electromyogram) signal. Myo armband is used for detecting the user's EMG signal. The gesture was classified after sending the data of EMG signal to a computer using Bluetooth communication. Then the robot named 'uBrain' was implemented to move by received data from Bluetooth communication in our experiment. 'Move front', 'Turn right', 'Turn left', and 'Stop' are controllable commands for the robot. And if the robot cannot receive the Bluetooth signal from a user or if a user wants to change manual mode to autonomous mode, the robot was implemented to be in the autonomous mode. The robot flashes the LED when IR sensor detects the fire during moving.

Discrimination of Motions with Physical Deformation of Muscles and EMG

  • Unkawa, Taksshi;Iida, Takeo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.109-112
    • /
    • 2000
  • The purpose of the present study is to evaluate the basic upper-limb involved in products manipulation. Upper-limb muscular deformations and electromyography (EMG) measurements are used as indexes for estimated motion: hand opening and closing, wrist extending and flexing, pronation and supination, grasping conditions. Measured values are analyzed by multivariate analysis and a regression equation is obtained for estimating the characteristics of upper-limb performance. Muscular deformation is defined as a change in shape, such as a pressure changes when the hand or wrist moves. hand opening and closing can be discriminated at a higher percentage of accuracy by muscular deformation data than by EMG data. Muscular deformation measurements using air-pack pressure sensors were verified to be effective in motion estimation applications.

  • PDF

The Study of Muscle Contraction Effect of Vibration Exercise Device Using Surface Electromyography (표면근전도를 이용한 진동운동기의 근수축 효과에 관한 연구)

  • Baik, Sung-Kook;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.55-63
    • /
    • 2006
  • The purpose of this study was to investigate the effects of vibration exercise using surface electromyography. Seven male collegiate wrestlers were participated in this study. Each subject stood on the platform and the vibration was induced for 1min. WEMG8 EMG system was used to record muscle activity from Vastus lateralis, Biceps Femoris, Tibialis Anterior, and Gastrocnemius. The EMG data were sampled for 30 sec. during non-vibration and vibration half squat position, respectively. The raw data were band pass filtered to remove noise and full wave rectified Paired sample t-test were performed to see the differences of maximum and average EMG between non-vibration and vibration trials. The results indicated that vibration produced much more muscle contraction than that of non-vibration trial for all selected muscles even though the significant difference was found only from Biceps Femoris. This phenomenon was due to the individual differences so care must be taken to evaluate vibration intensity and position before personal training.