• 제목/요약/키워드: EMG 분석

검색결과 332건 처리시간 0.026초

요통에 따른 프로 골퍼의 드라이버 스윙에 관한 근전도 분석 (The Effect of Low Back Pain on the EMG of Professional Golfer's Drive Swing)

  • 박종율
    • 한국운동역학회지
    • /
    • 제15권4호
    • /
    • pp.67-74
    • /
    • 2005
  • The purpose of this study is to compare and analyze the muscle activations between the professional golfers without low back pain symptom and the professional golfers with low back pain symptom, and so identify the stress related to golf swings, and provide the basic data to minimize the low back pain and the injury risk. Using surface electrode electromyography, we evaluated muscle activity in 6 male professional golfers during the golf drive swing. Surface electrodes were used to record the level of muscle activity in the Abdominal Oblique, Elector Spinae, Rectus Abdominis, Gluteus Maximus muscles during the golfer's swing. These signals were compared with %RVC(Reference voluntary contraction) which was normalized by IEMG(Integrated EMG). The golf swing was divided into five phases: take away, forward swing, acceleration, early follow through, late follow through. we observed patterns of trunk muscle activity throughout five phases of the golf swing. The results can be summarized as follows: RES(Right Elector Spinae) had statistically significant difference in take away phase, LGM(Left Gluteus Maximus), LRA(Left Rectus Abdominis), LOA(Left Oblique Abdominal) had statistically significant difference in forward swing phase, RES(Right Elector Spinae), RGM(Right Gluteus Maximus), ROA(Right Oblique Abdominal) had statistically significant difference in acceleration phase, RES(Right Elector Spinae), RGM(Right Gluteus Maximus) had statistically significant difference in early follow-through phase, LES(Left Elector Spinae), RGM(Right Gluteus Maximus) had statistically significant difference in late follow through phase.

주관절 근육의 활성화 유형에 대한 정량적 분석 (A Quantitative Analysis of Activation Pattern of Active Elbow Muscles)

  • 이두형;이영석;이진;김성환
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권4호
    • /
    • pp.413-420
    • /
    • 1997
  • In this paper, we analyzed the contraction patterns of active elbow muscles during isometric, concentric and eccentric contraction. The analysis parameters consist of frequency domain parameters (mean frequency, median frequency, peak frequency, peak power, skewness, kurtosis) and time domain paraseters (zero crossing, positive maxima, integrated EMG). The results of this study were as follows; The BR/BB of isometric contraction appeared to be Venter as the elbow joint was more extended. The BR /BB during concentric and eccentric contraction tended to increase with more extension of the elbow joint angle, but there was no significant difference between concentric and eccentric contraction. Further, the EMG power spectrum due to the type of contraction were different betwen eccentric and concentric contraction. According to the results, it was found that the activation pattern in elbow flexor muscles was different during three different muscle contraction pattern. Therefore, elbow flexor muscles should not be considered a single functioning unit. Especially, at the time domain analysis, IEMG is a dominant parameter for analysis of activation patterns, and the skewness kurtosis can be useful parameters in functional recognition for prosthesis control purpose.

  • PDF

근전도 간섭패턴 신호의 모델링과 분석에 관한 연구 (Studies on the Modeling and Analysis of the EMG interference pattern signal)

  • 유세근;민병관;김정우;김종원;김성환
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1993년도 추계학술대회
    • /
    • pp.145-150
    • /
    • 1993
  • It is an important component of the diagnosis to research the morphological changes of EMG in pathological conditions. In order to provide an EMG signal resulting from a predetermined neuromuscular pathophysiology, we have initially developed a mathmatical model of electromyographic interference pattern(IP). It can be used to study the variation of the IP resulting from morphological and electrophysiological changes occurring in disease states, because the model computes the IP from the underlying fiber and muscle structure. We performed quantative analysis or the model output, focusing on IPs resulting from simulations of dystrophic fiber loss and the MU denervation and reinnervation typical of neuropathies. To discribe the characteristics of IPs associated with these pathologies, a set of frequency domain discriptors, activity, mobility, and complexity were used, as well as several measures of the spectral density function. These discriptors demonstrate distinct patterns of variation corresponding to morphological changes observed in disease states, and closely with results obtained from the classical method, turn/amp technique.

  • PDF

Electromyography 기법을 이용한 육상 크라우칭 스타트의 하체 근 동원 비교분석 (Electromyography Analysis of Muscle Activities of tower limb for Crouching Start Technique)

  • 신성휴;박기자
    • 한국운동역학회지
    • /
    • 제13권2호
    • /
    • pp.115-122
    • /
    • 2003
  • The purposes of this study were to analyze the muscle activities and the characteristics of muscle recruting patterns of lower limb for crouching start technique using four elite splint. The EMG technique was used to record muscle activities of both right and left sides of retus femoris, vastus medialis, biceps femoris, and gastrocnemius. Eight surface electrodes were placed on the surface of the selected muscles and one ground electrode was also attached on the back of neck(C7). One video camera was also used to record the crouching start motion to define 6 events and 5 phases for further analysis. The raw EMG data were filtered with band pass filter(10-350) to remove artifacts and then low pass filtered(4Hz) to find the linear envelope which resemble muscle tension curve. This filter EMG data were normalized to MVIC for the purpose of comparison between right and left sides muscle. The results of this study were as follows. All four subjects showed that vastus medialis muscle activity was comparatively higher than those of retus femoris, biceps femoris, gastrocnemius. And left side of muscle activity was comparatively higher than right side of muscle activity. Therefore, when the subjects starting out crouching start position, we recognized that the muscle of lower limb showed interaction effect by each muscle.

팔 굽혀 펴기에 대한 생체역학 분석 (Analysis of Biomechanics of Push-up Movement)

  • 노태환;김정효;박시백;이나나
    • 대한물리의학회지
    • /
    • 제4권4호
    • /
    • pp.269-274
    • /
    • 2009
  • Purpose:The purpose of this study is an interval palmar width according to change of muscle activation under push-up movement. Methods:Three, this study participation normal young adult (male 3, mean age ; 24yaers). The subject performed maximum contraction under push-up movement. EMG activaty patterns is measured with three different width. The EMG activity of pectoralis major and latissimus dorsi were measured using surface electromyography. Results:EMG activation of pectoralis major and latissimus dorsi following of push-up was shown significant difference(p<.05). Also, experiment value was agree with calculation value and width of shoulder position was minimum of pectoralis major and latissimus dorsi muscle activity. Conslusion:RMS values in case of fretum and wide width of the hands on Latissimus Dorsi are shown muscle activity $132{\mu}V$ and $173.5{\mu}V$, respectively. Especialy, RMS value in terms of wide width of the hands on muscles is shown very enhanced muscle activity. It is suggest that interval palmar width of the hands on pectoralis major and latissimus dorsi in push-up movement was effective to intensify of the muscle activity.

  • PDF

어깨관절 벌림 시 부하 형태에 따른 근활성도 분석 (Analysis of Electromyography in Accordance with Abduction Angle of Shoulder Joint)

  • 권원안;김상수;이상학;김기철;민동기
    • PNF and Movement
    • /
    • 제11권2호
    • /
    • pp.67-75
    • /
    • 2013
  • Purpose : This study according to the angle at the shoulder joint abduction compare muscle activity by analyzing abduction in normal depending on the angle of the shoulder joint which muscles are activated exactly know what its purpose is. Methods : 15 students with a healthy shoulder abduction angles ($45^{\circ}$, $90^{\circ}$) according to the trapezius (upper, midder, lower), infrasupinatus, deltoid, pectoralis major, serratus anterior, latissimus dorsi muscle activity of the were analyzed. How the% MVIC EMG activity of each muscle EMG signals were standardized. Results : The mean age of the study subjects 23.6 years old, and is a key 175.6Cm, weight 70.66Kg respectively. $45^{\circ}$ non-load Pectoralis major, load Deltoid, $90^{\circ}$ non-load Deltoid, Latissimus dorsi load showed the most activity. Conclusion : The purpose of this study the muscle activity of the muscles in order to mobilize the comparison of the active muscles, but the experimenter with a range of individual differences that every time I was able to find the average. Based on these results will be helpful in future studies.

뇌졸중 환자의 햅틱 로봇 기반 상지 재활 시 근육 동시활성도 분석 (Muscle Coactivation Analysis during Upper-Limb Rehabilitation using Haptic Robotics in Stroke Survivors)

  • 오건영
    • 대한의용생체공학회:의공학회지
    • /
    • 제45권2호
    • /
    • pp.66-74
    • /
    • 2024
  • This study analyzed the occurrence of abnormal muscle coactivations based on the assistance of upper limb weight during reaching task in stroke patients. Nine chronic stroke survivors with hemiplegia performed reaching tasks using a programmable haptic robot. Electromyography (EMG) coactivation levels in the upper limb muscles were analyzed using a linear model describing the activation levels of two muscles when the patient's upper limb weight was assisted at 0%, 25%, and 50%. As the upper limb weight assistance of the haptic robot decreased, the magnitude of the EMG signal in both the deltoid and biceps muscles increased simultaneously on both the paretic and non-paretic sides. However, no difference was found between the paretic and non-paretic sides when comparing the slope of the linear model describing the activation relationship between the deltoid and biceps. The aforementioned results suggest that in some stroke survivors, the deltoids, triceps, and biceps on the paretic side may not be abnormally coupled when supporting the upper limbs against gravity. Furthermore, these results suggest that the combination of haptic robots and EMG analysis might be utilized for evaluating abnormal coactivations in stroke patients.

파워보행과 일반보행 시 하지근의 근전도 비교 분석 (The Comparative Analysis of EMG Activities on the Lower Limb Muscles during Power Walking and Normal Walking)

  • 기세준;채원식;강년주;장재익;윤창진
    • 한국운동역학회지
    • /
    • 제18권4호
    • /
    • pp.125-133
    • /
    • 2008
  • 본 연구의 목적은 파워보행 시 하지근의 근활성 정도를 비교 분석하고자 근전도 측정을 통해 파워보행과 일반보행 시 하지근비 평균적분 근전도 및 최대적분 근전도를 측정하였다. 피험자는 근골격계에 이상이 없는 남자 대학생 17명으로 선정하였으며, 실험 간 140 beat/min속도로 보행을 실시하였다. 일반보행 동작과 파워보행 동작의 구간별 근전도치를 비교해 본 결과 일반보행 동작 시 보다, 강하고 힘차게 걷는 파워보행 동작 시에서 측정하고자 하는 하지근의 대부분 근육활동이 전체적으로 높게 나타났다. 특히 보행 동작에서 주동근이 되는 대퇴직근 내측광근, 외측광근의 활동이 일반보행 동작보다 파워보행 동작에서 높게 나타났으며, 발이 지면에서 떨어지기 전 지면을 힘껏 밀 때 사용되어지는 내측비복근, 외측비복근에서, 발뒤꿈치가 지면에 닿을 때 사용되어지는 전경골근에서 일반보행동작보다 파워보행 동작에서 전체적으로 통계적으로 높은 유의한 근육활동이 나타났다. 이는 파워보행 동작이 일반 보행 동작보다 더욱 많은 근육활동을 유발시킴으로 하지근의 근육강화 및 에너지 소비에 직접적으로 도움이 되는 유산소 운동으로써 파워보행을 활용 할 수 있을 것이라 판단되어진다. 따라서 본 연구의 결과 파워보행 동작이 건강유지와 다이어트를 원하는 사람들에게 일반보행 보다 더 높은 효과가 있을 것으로 판단된다.

장애인용 핸드컨트롤을 이용한 가속 및 제동 페달을 동작할 때의 상지 근육 EMG 분석 및 운전 성능 평가 (Analysis of Muscle Activities and Driving Performance for Manipulating Brake and Accelerator Pedal by using Left and Right Hand Control Devices)

  • 송정헌;김용철
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권2호
    • /
    • pp.74-81
    • /
    • 2017
  • The purpose of this study was to investigate the EMG characteristics of driver's upper extremity and driving performance for manipulating brake and accelerator pedal by using left and right hand control devices during simulated driving. The people with disabilities in the lower limb have problems in operation of the motor vehicle because of functional loss for manipulating brake and accelerator pedal. Therefore, if hand control device is used for adaptive driving controls in people with lower limb impairments, the disabled people can improve their quality of life by driving a motor vehicle. Six subjects were participated in this study to evaluate driving performance and muscle activities for operating brake and accelerator pedal by using two different hand controls (steering column mounted hand control and floor mounted hand control) in driving simulator. We measured EMG activities of six muscles (posterior deltoid, middle deltoid, triceps, biceps, flexor carpi radialis, and extensor carpi radialis) during pushing and pulling movement with different hand controls for acceleration and braking. STISim Drive 3 software was used for the performance test of different hand control devices in straight lane course for time to reach target speed and brake reaction time. While pulling the hand control lever toward the driver, normalized EMG activities of middle deltoid, triceps and flexor carpi radialis in subjects with disabilities were significantly increased (p < 0.05) compared to the normal subjects. It was also found that muscle responses of posterior deltoid were significantly increased (p < 0.05) when using the right hand control than left hand control. While pushing the hand control lever forward away from the driver, normalized EMG activities of posterior deltoid, middle deltoid and extensor carpi radialis in subjects with disability were significantly increased (p < 0.05) compared to the normal subjects. It was shown that muscle responses of middle deltoid, biceps and extensor carpi radialis were significantly increased when using the right hand control than left hand control. Brake reaction time and time to reach target speed in subjects with disability was increased by 12% and 11.3% on average compared to normal subjects. The subjects with physical disabilities showed a tendency to relatively slow acceleration at the straight lane course.

근전도와 저항 센서를 이용한 보행 단계 감지 (Gait Phases Detection from EMG and FSR Signals in Walkingamong Children)

  • 장은혜;지수영;이재연;조영조;전병태
    • 감성과학
    • /
    • 제13권1호
    • /
    • pp.207-214
    • /
    • 2010
  • 본 연구에서는 근전도 신호를 활용하여 정상인의 보행과 관련된 상지와 하지 근육의 신호를 확인하고 저항센서를 이용하여 정상적인 보행 패턴을 확인하였다. 대학생 15명을 대상으로 정지해 있을 때와 평지를 보행할 때, 상지의 4부위(대흉근과 승모근)와 하지의 10부위(대퇴직근, 대퇴이두근, 내측광근, 외측광근, 반막양근, 반건양근, 가자미근, 장비골근, 내비복근과 외비복근)에 전극을 부착하여 근전도를 측정하였다. 저항센서는 양측 발바닥의 8부위에 센서를 부착하여 보행시 발에 가해지는 압력을 측정하였다. 그 결과, 근전도 신호는 정지상태에 비하여 보행 시에 허벅지의 외측광근과 반건양근을 제외하고 모든 근육에서 유의하게 높은 진폭을 가졌다. 또한 보행주기의 두 단계인 입각기와 유각기와 관련된 근육을 확인하였다. 저항 센서의 신호 분석 결과, 평균 보폭 주기 동안 크게 입각기와 유각기의 두 주기와 세부적으로 여덟 단계 - 초기 접지기, 하중 반응기, 중간 입각기, 말기 입각기, 전 유각기, 초기 유각기, 중간 유각기, 말기 유각기 - 의 보행 주기를 확인할 수 있었다.

  • PDF