• Title/Summary/Keyword: EMC(Epoxy Molding Compound)

Search Result 60, Processing Time 0.024 seconds

Active Infrared Thermography for Visualizing Subsurface Micro Voids in an Epoxy Molding Compound

  • Yang, Jinyeol;Hwang, Soonkyu;Choi, Jaemook;Sohn, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.106-114
    • /
    • 2017
  • This paper presents an automated subsurface micro void detection technique based on pulsed infrared thermography for inspecting epoxy molding compounds (EMC) used in electronic device packaging. Subsurface micro voids are first detected and visualized by extracting a lock-in amplitude image from raw thermal images. Binary imaging follows to achieve better visualization of subsurface micro voids. A median filter is then applied for removing sparse noise components. The performance of the proposed technique is tested using 36 EMC samples, which have subsurface (below $150{\mu}m{\sim}300{\mu}m$ from the inspection surface) micro voids ($150{\mu}m{\sim}300{\mu}m$ in diameter). The experimental results show that the subsurface micro voids can be successfully detected without causing any damage to the EMC samples, making it suitable for automated online inspection.

A Study on the Cure Behavior of Epoxy Molding Compound (Epoxy Molding Compound의 경화거동에 관한 연구)

  • 윤상영;오명숙;박내정
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.837-844
    • /
    • 2000
  • The cure behavior of commercial epoxy molding compounds (EMC) commonly used for IC package was studied at constant cure temperatures as well as at constant heating rates using differential scanning calorimetry (DSC), rheometer, and dielectric analyzer (DEA). The cure kinetics were obtained using autocatalytic reaction model according to the Ryan Dutta method after assuming m+n equal to 2. The prediction of reaction rates by the model equation corresponded well to experimental data at all temperatures except for 10$0^{\circ}C$. The phase transitions such as gelation and vitrification occurred during network formation. At each isothermal cure temperature, $T_{g}$ was measured in accordance with cure time, and the vitrification point was attained when $T_{g}$ was equal to $T_{cure}$. The temperature dependence of gel points and vitrification points showed good agreement with Arrhenius relation. DEA using parallel plate electrode was effective for the monitoring of EMC cure. we knew that if the resin systems are materials of comparable quality, $_{gel}$$T_{g}$ is constant regardless of accelerator concentration in TTT (Time-Temperature-Transformation) diagram.

  • PDF

Study on Properties of Epoxy Resin Compositions Containing Novolac Derivatives (바이페닐 유도체를 도입한 에폭시 수지 조성물의 특성에 관한 연구)

  • Choi, Su Jung;Kim, Young Chul
    • Journal of Adhesion and Interface
    • /
    • v.12 no.4
    • /
    • pp.138-143
    • /
    • 2011
  • Recently epoxy resin compositions having backbone of novolac derivatives with biphenylene compounds have been used as materials of eco-freindly EMC (Epoxy Molding Compound), because the cured epoxy resin compositions show the self-extinguishing without flame retardant additives. In this study, epoxy resin compositions were prepared and cured using novolac derivateves with biphenylene. Their propeties - structures of phenol derivatives and reactivity, thermal expansion, modulus, and thermal degradation - were obtained by DSC, DMA, TMA, TGA method. When both epoxy resin and hardenr had the biphenyl novolac structure, epoxy resin compositions showed low thermal expansion, good mechanical property, and combustion retardation.

Measurement of Adhesion Strength between Oxidized Cu-based Leadframe and EMC (산화처리된 구리계 리드프레임과 EMC 사이의 접착력 측정)

  • Lee, Ho-Young;Yu, Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.992-999
    • /
    • 1999
  • Due to the inherently poor adhesion strength of Cu-based leadframe/EMC(Epoxy Molding Compound) interface, popcorn-cracking phenomena of thin plastic packages frequently occur during the solder reflow process. In this study, in order to enhance the adhesion strength of Cu-based leadframe/EMC interface, brown-oxide layer was formed on the leadframe surface by immersing of leadframe sheets in hot alkaline solution, and the adhesion strength of leadframe/EMC interface was measured by using SDCB(Sandwiched Double Cantilever Beam) and SBN(Sandwiched Brazil-Nut) specimens. Results showed that brown oxide treatment of leadframe introduced fine acicular CuO crystals on the leadframe surface and improved the adhesion strength of leadframe/EMC interface. Enhancement of adhesion strength was directly related to the thickening kinetics of oxide layer. This might be due to the mechanical interlocking of fine acicular CuO crystals into EMC.

  • PDF

Failure Paths Analyses of the Leadframe/EMC System

  • Lee, H.Y.;Kim, S.R.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2000
  • Copper-based leadframe sheets were oxidized in a black-oxide forming solution, and molded with epoxy molding compound (EMC) to form sandwiched double-cantilever beam (SDCB) specimens. The adhesion strength of leadframe/EMC interface was measured in terms of fracture toughness by using SDCB specimens and the fracture surfaces were analyzed by various equipments such as glancing-angle XRD, AFM, and SEM. Results showed that three types of failure paths, which were closely related to the surface condition of leadframes before molding.

  • PDF

Enhanced Properties of Epoxy Molding Compound by Plasma Polymerization Coating of Silica (실리카의 플라즈마 중합 코팅에 의한 에폭시 봉지재의 물성 향상 연구)

  • Roh, J.H.;Lee, J.H.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.2 no.2
    • /
    • pp.1-10
    • /
    • 2001
  • Silica for Epoxy Molding Compound (EMC) was coated via plasma-polymerization with RF plasma (13.56 MHz) as a function of treatment time, power and pressure. 1,3-diaminopropane, allylamine, pyrrole, 1,2-epoxy-5-hexene, allylmercaptan or allylalcohol were utilized for plasma polymerization coating and adhesion of coated silica was evaluated by measuring flexural strength. CTE and water absorption of EMC were also measured, and fracture surface of flexural specimen was analyzed by SEM in order to elucidate the failure mode. The plasma polymer coated silica was analyzed by FT-IR and reactivity of plasma polymer coating with epoxy resin was evaluated with DSC in order to investigate the adhesion mechanism. The EMC prepared from the silica coated with 1,3-diaminopropane or allylamine exhibited high flexural strength, low CTE, and low water absorption compared with the control sample, and also exhibited 100% cohesive failure mode. These results can be attributed to the chemical reaction between the functional groups in the plasma polymer coating and epoxy resin, and also consistent with the results from FT-IR and DSC analysis.

  • PDF

Irregular Failures at Metal/polymer Interfaces

  • Lee, Ho-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.347-355
    • /
    • 2003
  • Roughening of metal surfaces frequently enhances the adhesion strength of metals to polymers by mechanical interlocking. When a failure occurs at a roughened metal/polymer interface, the failure prone to be cohesive. In a previous work, an adhesion study on a roughened metal (oxidized copper-based leadframe)/polymer (Epoxy Molding Compound, EMC) interface was carried out, and the correlation between adhesion strength and failure path was investigated. In the present work, an attempt to interpret the failure path was made under the assumption that microvoids are formed in the EMC as well as near the roots of the CuO needles during compression-molding process. A simple adhesion model developed from the theory of fiber reinforcement of composite materials was introduced to explain the adhesion behavior of the oxidized copper-based leadframe/EMC interface and failure path. It is believed that this adhesion model can be used to explain the adhesion behavior of other similarly roughened metal/polymer interfaces.

The Characteristics of Viscosity Behavior of EMC for Semi-conductor Encapsulant -The Prediction of Viscosity by Mooney Equation- (반도체 봉지제용 EMC의 점도거동 특성 연구 -Mooney식을 이용한 점도예측-)

  • Kim, In Beom;Bae, Doo Han;Lee, Myung Cheon;Lee, Euy Soo;Yun, Hyo Chang;Lim, Jong Chan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.949-953
    • /
    • 1999
  • Because epoxy molding compound(EMC) for semi-conductor encapsulants contains high concentrations of fillers, its flow behaviors are affected much by the concentrations and properties of those fillers. This paper reports the effects of a filler concentration, shape, size, and size distributions on the viscosity behavior of EMC(epoxy/silica). In addition, the prediction of viscosity behavior was performed using the Mooney equation. The maximum packing volume in the Mooney equation was calculated by Ouchiyama's packing model and Taguchi's optimization method, while the shpae factor was determined by fitting the experimental data. The results showed that the Mooney equation predicted the viscosity behavior of EMC very well.

  • PDF

A Study on the Reliability of Plastic BGA Package (플라스틱 BGA 패키지의 신뢰성에 관한 연구)

  • Kim, Gyeong Seop;Sin, Yeong Ui
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.222-222
    • /
    • 2000
  • PBGA(Plastic Ball Grid Array) is composed of some materials such as PCB(Printed Circuit Board), epoxy molding compound, die attach and so on. Reliability of PBGA package is weak compared with plastic packages. The weak points of reliability are the lower resistance to popcorn cracking, which is induced by moisture absorption in PCB, and the pressure cooker test corrosion, which is the basic problem due to the material characteristics of PCB. Introducing the PCB baking and the plasma treatment cleared the popcorn cracking phenomenon. The PCB baking and plasma treatment reduced the epoxy void by eliminating the source of moisture vaporization during the epoxy curing and enhanced the adhesion between PCB and epoxy. Also, plasma treatment enhanced the wettability of epoxy on PCB. The problem of corrosion is cleared using multi-functional epoxy. This type of EMC(Epoxy Molding Compound) is recommended in package using PCB as a substrate. (Received November 19, 1999)

A Study on the Reliability of Plastic BGA Package (플라스틱 BGA 패키지의 신뢰성에 관한 연구)

  • 김경섭;신영의
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.95-99
    • /
    • 2000
  • PBGA(Plastic Ball Grid Array) is composed of some materials such as PCB(Printed Circuit Board), epoxy molding compound, die attach and so on. Reliability of PBGA package is weak compared with plastic packages. The weak points of reliability are the lower resistance to popcorn cracking, which is induced by moisture absorption in PCB, and the pressure cooker test corrosion, which is the basic problem due to the material characteristics of PCB. Introducing the PCB banking and the plasma treatment cleared the popcorn cracking phenomenon. The PCB banking and plasma treatment reduced the epoxy void by eliminating the source of moisture vaporization during the epoxy curing and enhanced the adhesion between PCB and epoxy. Also, plasma treatment enhanced the wettability of epoxy on PCB. The problem of corrosion is cleared using multi-functional epoxy. This type of EMC(Epoxy Molding Compound) is recommended in package using PCB as a substrate.

  • PDF