• Title/Summary/Keyword: EM wave

Search Result 237, Processing Time 0.024 seconds

Pressure Characteristics on Korean High-Speed Railway Acoustic Screen Using 1/61 Scaled-Down Moving Model Rig

  • Jang, Yong-Jun;Kim, Hag-Beom;Jung, Woo-Sung;Kim, Dong-Hyeon
    • International Journal of Railway
    • /
    • v.2 no.2
    • /
    • pp.93-97
    • /
    • 2009
  • The experiments for aerodynamic characteristics of railway acoustic screen are performed using 1/61 scaled-down moving model rig facility which employs an axis symmetry and one wire guidance method. The launching mechanism is an air-gun type. The train model for the experiment is the high speed train (Korea Train Express: KTX) and the tested speed is about 300 km/h. The tested train length is 61 em which is corresponding to two units of KTX train. The cross sectional area and weight of train model are 0.00264 $m^2$ and 287 g, respectively. The Reynolds number based on the model train length is $1.2{\times}10^7$. The strength of pressure wave is measured using piezo typed pressure sensor. The measured pick value of pressure was as high as 365 Pa in the shortest gap between the acoustic screen and model train. The measured pressure is well compared with the field test data of mc 779-1 [2] values. However, the experimental data were slightly lower than the mc 779-1 values. The results show the model test can be used as a substitute for the field test.

  • PDF

Electrospun Magnetic Nanofiber as Multifunctional Flexible EMI-Shielding Layer and its Optimization on the Effectiveness

  • Yu, Jiwoo;Nam, Dae-Hyun;Lee, Young-Joo;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.57-63
    • /
    • 2016
  • We developed a flexible and micro-thick electromagnetic interference (EMI) shielding nanofabric layer that also functions as a water resisting and heat sinking material. Electrospinning followed by a simple heat treatment process was carried on to produce the EMI-shielding Ni/C hybrid nanofibers. The ambient oxygen partial pressure ($pO_2$ = 0.1, 0.7, 1.3 Torr) applied during the heat treatment was varied in order to optimize the effectiveness of EMI-shielding by modifying the size and crystallinity of the magnetic Ni nanoparticles distributed throughout the C nanofibers. Permittivity and permeability of the nanofibers under the electromagnetic (EM) wave frequency range of 300 MHz~1 GHz were measured, which implied the EMI-shielding effectiveness (SE) optimization at $pO_2$ = 0.7 Torr during the heat treatment. The materials' heat diffusivity for both in-plane direction and vertical direction was measured to confirm the anisotropic thermal diffusivity that can effectively deliver and sink the local heat produced during device operations. Also, the nanofibers were aged at room temperature in oxygen ambient for water resisting function.

Laminating Rule for Predicting the Dielectric Properties of the E-glass/Epoxy Laminate Composite (유리섬유/에폭시 복합재료 적층판의 유전성질 예측을 위한 적층판 법칙)

  • Chin, Woo-Seok;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.141-145
    • /
    • 2005
  • Since the electromagnetic properties of fiber reinforced polymeric laminate composite can be tailored effectively by adjusting its composition and regulating the stacking sequence, it is plausible material for fabricating the radar absorbing structures (RAS) of desired performance. In order to design the effective electromagnetic wave (EM) absorber with the fiber reinforced polymeric laminate composite, its electromagnetic characteristics should be available and could be regulated easily in the target frequency bands. In this study, dielectric characteristics of the E-glass/epoxy laminate composites were measured by the free space method in the X-band frequency range ($8.2\;{\sim}\;12.4\;GHz$). In order to describe the dielectric behavior of laminate composites of arbitrary stacking sequences, the equivalent circuit model and the laminating equations for estimating dielectric properties were proposed, and experimentally verified. From the comparison of the predicted and measured data, the proposed method predicted well the experimentally measured data.

  • PDF

Miniature Staircase-Shaped Wideband MIMO Antenna with Excellent Isolation, Compliant to the SAR Standard (SAR규격을 만족하는 우수한 격리도의 소형 계단구조 광대역 MIMO 안테나)

  • Kahng, Kyungseok;Yang, In-Kyu;Kahng, Sungtek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1413-1420
    • /
    • 2013
  • This paper proposes a novel compact MIMO antenna which has miniaturized radiators and their row correlation coefficient, working for the LTE mobile communication, and its SAR is observed. Each of the proposed radiators has a shape of staircase and the bandwidth is twice larger than the conventional PIFA as 600MHz(21%) in 2.5 GHz - 3.15 GHz. And the area of the radiators is $16.5mm{\times}9.7mm$ proper for a handheld device. Also, by adding a planar mushroom decoupling structure between the radiators, the isolation is improved. The design has been carried out using the commercial full-wave time-domain EM solver and the finalized MIMO antenna has the return loss less than -10 dB in the LTE band, the isolation better than 20 dB and the efficiency more than 90% with the gain of 4.3 dB. Regarding the SAR of the antenna, it is observed that the average SAR value of 1g is estimated as 1.37W/Kg, which is lower than the SAR standard.

Triple-Mode Characteristics of Cylindrical Cavity Loading a Cylindrical Dielectric Resonator

  • Lee, Seung-Mo;Kim, Cha-Man;Park, Jong-Chul;Kim, In-Ryeol;Oh, Soon-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.630-636
    • /
    • 2016
  • In this paper, a novel triple-mode cavity structure, designed for compactness and operating at 850 MHz, is analyzed. A cylindrical dielectric resonator is loaded into a metallic cylindrical cavity. Previous study has been focused on the analysis of the cylindrical dielectric resonator, but in this paper, the effect of the cylindrical metallic cavity has been analyzed. Enclosing the dielectric resonator inside the metallic cavity increases the resonant frequency of the dielectric resonator; however, this increases the quality factor and introduces the possibility of installing coupling screws. The principle of generation of triple-mode was investigated by parametric analysis. The generated triple-mode is TE011 mode and two orthogonally generated HEM121 modes. By adjusting the radius of the dielectric resonator, the height of the dielectric resonator, or the radius of the cylindrical metallic cavity, three modes could be coincided. However, the height of the metallic cavity keeps three modes separated. The mode characteristics of the proposed cavity are analyzed using a full-wave electromagnetic (EM) simulation. The proposed triple-mode cavity could be developed to triple-mode filter using a coupling screw, and the commercial application for the miniaturized filter below 1 GHz could be expected.

The Design and Experiment of a Planar Patch Sensor for Partial Discharge Diagnostics in 6.6 kV Rotating Machine Stator Windings

  • Yang, Sang-Hyun;Park, Noh-Joon;Park, Dae-Hee;Kim, Hee-Dong;Lim, Kwang-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.173-176
    • /
    • 2009
  • In the stator windings of a 6.6 kV rotating machine, internal discharges, slot discharges, and surface discharges are mainly caused by internal voids and insulation degradation. If a partial discharge(PD) occurs in an inner-part of the stator windings, it will cause electromagnetic pulses with wide frequency ranges. Discharge sparks and electromagnetic pulses generated from a discharge source, can be detected using various RF resonators like an EM sensor. In order to detect these types of electromagnetic sources, a planar patch sensor was designed and fabricated using a CST-MWS simulation, and PD signals from an artificially defected stator winding were also measured by the sensor proposed in this study. Furthermore, an HFCT was used as a reference sensor and compared with the proposed new planar patch sensor. In the results of the experiment, the planar patch sensor showed a similar performance to the HFCT sensor.

Design of Aircraft Internal On-glass Antennas (항공기용 내장형 온-글래스 안테나 설계)

  • Kang, Woo-Joon;Choo, Ho-Sung;KIim, Young-Gi;Kang, Ho-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.65-71
    • /
    • 2009
  • In this paper, we propose an aircraft on-glass antenna for FM radio reception. To obtain broad matching bandwidth, we employed a multiple loop as the basic antenna structure, and the shape of the loops mimics the frame of a window in order to ensure pilots' field of view as large as possible. The detailed design parameters of the multi-loop structure were determined using a Pareto genetic algorithm with a full wave EM simulation tool. The optimized on-glass antenna was built and installed on a Korean utility helicopter (KUH) The measurement results showed a half power matching bandwidth of about 63.3 %, average vertical bore-sight gain of about -12.98 dBi in the FM band.

HOW TO DEAL WITH RADIO ASTRONOMY INTERFERENCE

  • UMAR, ROSLAN;HAZMIN, SABRI NOR;ABIDIN, ZAMRI ZAINAL;IBRAHIM, ZAINOL ABIDIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.691-693
    • /
    • 2015
  • Radio sources are very weak, as they can travel through large distances. Radio sources also have photons with low energies compared to others electromagnetic waves (EM). Microwave photons have a little more energy than radio waves, infrared photons have still more, then visible, ultraviolet, X-rays, and the most energetic electromagnetic wave is gamma-rays. Radio astronomy studies are restricted due to radio frequency interference (RFI) produced by people. If this disturbance is not minimized, it poses critical problems for astrophysical studies. The purpose of this paper is to profile RFI maps in Peninsular Malaysia with a minimum mapping technique for RFI interference. Decision-making processes using GIS (Geographical Information System) for the selection requires gathering information for a variety of parameters. These factors affecting the selection process are also taken into account. In this study, various factors or parameters are involved, such as the availability of telecommunications transmission (including radio and television), rainfall, water lines and human activity. This mapping step must be followed by RFI site testing in order to identify areas of low RFI. This study will benefit radio astronomy research, especially regarding the RFI profile.

The Design of a Planar Patch Sensor for Partial Discharge Diagnosis in 6.6 kV Rotating Machine Stator Windings (6.6 kV 회전기 고정자 권선에서 부분방전 신호 검출을 위한 평면 패치 센서 설계)

  • Lim, Kwang-Jin;Park, Noh-Joon;Kim, Hee-Dong;Ju, Young-Ho;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.481-485
    • /
    • 2008
  • In stator windings of 6.6 kV rotating machine, corona discharge, surface discharge and internal discharge are caused mainly by internal voids and insulation degradation. Also, if partial discharge occurs in inner-part of stator windings, it will be happened electromagnetic pulses at wide frequency range. In case of discharge spark, electromagnetic pulse generated from discharge source, and we can detect it by using various RF resonators as an EM sensor. In order to detect these kind of electromagnetic sources, we have designed and fabricated planar patch sensor using CST MWS simulation, and also PD signals from artificial defected cable were measured by our proposed sensor. Furthermore, HFCT was used as a reference sensor and compared with our proposed new planar patch sensor.

Design of a Compact Bandstop Filter-combined UHF-band CRLH Bandpass Filter to Suppress the Spurious in L-band (L대역 불요파 저감을 위한, UHF대역 CRLH 대역통과 여파기와 소형 대역저지 여파기의 결합 설계)

  • Eom, Da-Jeong;Kahng, Sung-Tek;Mok, Se-Gyoon;Song, Choong-Ho;Woo, Chun-Sik;Park, Do-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.104-109
    • /
    • 2012
  • In this paper, we propose a way to improve the quality of L-band wireless communication from unfriendly influential factors lying in the neighboring RF bands. The UHF-band system has resonator components and they generate harmonics as the spurious in the L-band. Therefore, a metamaterial CRLH bandpass filter is designed for the purpose of system miniaturization and smaller insertion loss, and its spurious phenomenon is observed in the frequency domain. And its harmonics in the L-band are suppressed by a compact bandstop filter whose equivalent circuit is newly developed. The design methodology is validated by the equivalent circuit to be compared with commercial full-wave EM software simulations, where the spurious is dropped by 20dB. Also, the advantage of the proposed design is presented by the comparison where our filter is much smaller than the conventional parallel edge coupled filter by over 50%, with excellent harmonic suppression.