• Title/Summary/Keyword: EM wave

Search Result 238, Processing Time 0.024 seconds

A Sequential LiDAR Waveform Decomposition Algorithm

  • Jung, Jin-Ha;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.681-691
    • /
    • 2010
  • LiDAR waveform decomposition plays an important role in LiDAR data processing since the resulting decomposed components are assumed to represent reflection surfaces within waveform footprints and the decomposition results ultimately affect the interpretation of LiDAR waveform data. Decomposing the waveform into a mixture of Gaussians involves two related problems; 1) determining the number of Gaussian components in the waveform, and 2) estimating the parameters of each Gaussian component of the mixture. Previous studies estimated the number of components in the mixture before the parameter optimization step, and it tended to suggest a larger number of components than is required due to the inherent noise embedded in the waveform data. In order to tackle these issues, a new LiDAR waveform decomposition algorithm based on the sequential approach has been proposed in this study and applied to the ICESat waveform data. Experimental results indicated that the proposed algorithm utilized a smaller number of components to decompose waveforms, while resulting IMP value is higher than the GLA14 products.

Real-time passive millimeter wave image segmentation for concealed object detection (은닉 물체 검출을 위한 실시간 수동형 밀리미터파 영상 분할)

  • Lee, Dong-Su;Yeom, Seok-Won;Lee, Mun-Kyo;Jung, Sang-Won;Chang, Yu-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.181-187
    • /
    • 2012
  • Millimeter wave (MMW) readily penetrates fabrics, thus it can be used to detect objects concealed under clothing. A passive MMW imaging system can operate as a stand-off type sensor that scans people in both indoors and outdoors. However, because of the diffraction limit and low signal level, the imaging system often suffers from low image quality. Therefore, suitable statistical analysis and computational processing would be required for automatic analysis of the images. In this paper, a real-time concealed object detection is addressed by means of the multi-level segmentation. The histogram of the image is modeled with a Gaussian mixture distribution, and hidden object areas are segmented by a multi-level scheme involving $k$-means, the expectation-maximization algorithm, and a decision rule. The complete algorithm has been implemented in C++ environments on a standard computer for a real-time process. Experimental and simulation results confirm that the implemented system can achieve the real-time detection of concealed objects.

Exploiting W. Ellison model for seawater communication at gigahertz frequencies based on world ocean atlas data

  • Tahir, Muhammad;Ali, Iftikhar;Yan, Piao;Jafri, Mohsin Raza;Jiang, Zexin;Di, Xiaoqiang
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.575-584
    • /
    • 2020
  • Electromagnetic (EM) waves used to send signals under seawater are normally restricted to low frequencies (f) because of sudden exponential increases of attenuation (𝛼) at higher f. The mathematics of EM wave propagation in seawater demonstrate dependence on relative permeability (𝜇r), relative permittivity (𝜀r), conductivity (𝜎), and f of transmission. Estimation of 𝜀r and 𝜎 based on the W. Ellison interpolation model was performed for averaged real-time data of temperature (T) and salinity (S) from 1955 to 2012 for all oceans with 41 088 latitude/longitude points and 101 depth points up to 5500 m. Estimation of parameters such as real and imaginary parts of 𝜀r, 𝜀r', 𝜀r", 𝜎, loss tangent (tan 𝛿), propagation velocity (Vp), phase constant (𝛽), and α contributes to absorption loss (La) for seawater channels carried out by using normal distribution fit in the 3 GHz-40 GHz f range. We also estimated total path loss (LPL) in seawater for given transmission power Pt and antenna (dipole) gain. MATLAB is the simulation tool used for analysis.

ULF electromagnetic variation associated with seismic wave (지진파에 의해 발생하는 ULF 전자기장 변동)

  • Lee Heuisoon;Lee Choon-Ki;Kwon Byung-Doo;Yang Jun-Mo;Oh Seokhoon;Song Yoonho;Lee Tae Jong;Uchida Toshihiro
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.197-202
    • /
    • 2005
  • The electromagnetic signals associated with the seismic activity in the south-east offshore of Kii peninsula, Japan, were clearly recorded at the MT sites in Jeju island, Korea. In this research, we have identified the co-seismic electromagnetic signals associated with the seismic activity and have analyzed the characteristics of significant electromagnetic variations. The analysis of phase velocity, power spectral density, MT impedance and polarization direction shows that the significant earthquake signals have the frequency band of about 0.05 to 0.5 Hz and that the sources of electromagnetic field are local effects of passing seismic waves. The simple approximation using electrokinetic effect successfully explains the co-seismic EM signals coincides with measured data but cannot explain the localities of electromagnetic variations.

  • PDF

Numerical modelling of electromagnetic waveguide effects on crosshole radar measurements (시추공간 레이다 측정에서 전자기 도파관 효과의 수치모델링)

  • Jang, Han-Nu-Ree;Park, Mi-Kyung;Kim, Hee-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.69-76
    • /
    • 2007
  • High-frequency electromagnetic (EM) wave propagation associated with borehole ground-penetrating radar (GPR) is a complicated phenomenon. To improve the understanding of the governing physical processes, we employ a finite-difference time-domain solution of Maxwell's equations in cylindrical coordinates. This approach allows us to model the full EM wavefield associated with crosshole GPR surveys. Furthermore, the use of cylindrical coordinates is computationally efficient, correctly emulates the three-dimensional geometrical spreading characteristics of the wavefield, and is an effective way to discretise explicitly small-diameter boreholes. Numerical experiments show that the existence of a water-filled borehole can give rise to a strong waveguide effect which affects the transmitted waveform, and that excitation of this waveguide effect depends on the diameter of the borehole and the length of the antenna.

Thermal Steady State in an Anatomical Model of the Human Head under High-Power EM Exposure (고출력 전자기파 노출 환경에서 인체 두부의 온도 변화)

  • Kim, Woo-Tae;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1073-1084
    • /
    • 2010
  • In this paper, the bio-heat equation including thermoregulatory functions is solved for an anatomically based human head model comprised of 14 tissues to study the thermal implications of high-power exposure to electromagnetic(EM) fields due to half-wave dipole antenna both at 835 and 1,800 MHz. The dipole antenna is located at the side of the ear and the front of the eyes. The FDTD method has been used for the SAR computation. When solving the BHE, the thermoregulation function and sweating effetecs are included in order to predict more exact temperature increase. It is noted that an approximately proportional relationship between the tissues and the maximum temperature increase and the antenna power is not maintained when the thermoregulation and sweating effects are fully accounted for under high power exposure.

Long Distance Transmission System of Tag's ID in RFID System (전자인식 시스템에서 택 ID의 원거리 전송 시스템)

  • Kim, Dong-Hun;Jo, Hyeong-Guk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.63-67
    • /
    • 2009
  • In RFID system, Tag's Identification data is processed in host computer by application program. Example of application program is parking administration program, library state program etc.. Tag's ID that is recognized in reader is inputted to the Host computer. Application program of computer searches data in DB of computer such as Tag ID. After finding the same ID, host computer send to control command to driver H/W in accordance with application purpose. But, It need to confirm in long distance whether achievement process is acted normally. There will be the 2 methods, when we monitors the process in long distance. One is wired monitoring system, another is wireless monitoring system. Among wire method, internet communication network is useful. RFID system manufacture first in this treatise. RFID system Embody using EM4095 chip that is doing 125KHz by carrier wave. Tag's characteristic ID is sent in remote place through module that use W3100A chip. This system Manufacture, and data send-receive confirmed using simple application program. Reception confirm by result, and pictures show by whole system and each part. And a control program explained of each part.

  • PDF

Ka-Band Variable-Gain CMOS Low Noise Amplifier for Satellite Communication System (위성 통신 시스템을 위한 Ka-band 이득제어 CMOS 저잡음 증폭기)

  • Im, Hyemin;Jung, Hayeon;Lee, Jaeyong;Park, Sungkyu;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.959-965
    • /
    • 2019
  • In this paper, we design a low noise amplifier to support ka-band satellite communication systems using 65-nm RFCMOS process. The proposed low noise amplifier is designed with high-gain mode and low-gain mode, and is designed to control the gain according to the magnitude of the input signal. In order to reduce the power consumption, the supply voltage of the entire circuit is limited to 1 V or less. We proposed the gain control circuit that consists of the inverter structure. The 3D EM simulator is used to reduce the size of the circuit. The size of the designed amplifier including pad is $0.33mm^2$. The fabricated amplifier has a -7 dB gain control range in 3 dB bandwidth and the reflection coefficient is less than -6 dB in high gain mode and less than -15 dB in low gain mode.

The Study on Optimal Placement and Systematic Performance Measurement Method for Communication/Navigation Antenna of Rotary Wing (회전익 항공기의 통신·항법 안테나 최적 위치설계를 통한 체계성능 측정방법 연구)

  • Sangwan No;Sangyoon Jin;Minsoo Kim;Howon Kang;Seungbeom Ahn
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.110-117
    • /
    • 2023
  • In this paper, the optimal placement of the rotary wing's communication and navigation antennas was evaluated by measuring their performance through ground simulations and flight tests. To select the mounting position of the communication and navigation antenna on the helicopter, after considering the shape and characteristics of the airframe, the radiation patterns, coupling analysis, equipment operation profiles, and antenna type analysis were performed for the aircraft-mounted antenna. Based on the analysis results, a procedure for sequentially performing voltage standing wave ratio (VSWR) measurement and antenna pattern test was established through ground and flight tests of the antenna. The systematic performance measurement method and procedure proposed in this paper were verified through ground and flight tests of the Light Armed Helicopter (LAH) system.

Time-Efficient SE(Shielding Effectiveness) Prediction Method for Electrically Large Cavity (전기적으로 큰 공진기의 시간효율적인 차단 효율 계산법)

  • Han, Jun-Yong;Jung, In-Hwan;Lee, Jae-Wook;Lee, Young-Seung;Park, Seung-Keun;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.337-347
    • /
    • 2013
  • It is generally well-known that the inevitable high power electromagnetic wave affects the malfunction and disorder of electronic equipments and serious damages in electronic communication systems. Hence, it is necessary to take measures against high power electromagnetic(HPEM) wave for protecting electronic devices as well as human resources. The topological analysis based on Baum-Liu-Tesche(BLT) equation simplifying the moving path of electromagnetic and the observation points and Power Balance Method(PWB) employing statistical electromagnetic analysis are introduced to analyze relatively electrically large cavity with little time consumption. In addition to the PWB method, full wave results for cylindrical cavity with apertures and incident plane wave are presented for comparison with time-consumption rate according to the cavity size.