• 제목/요약/키워드: EM Clustering

검색결과 65건 처리시간 0.026초

EM 알고리즘을 이용한 사물 인터넷 서비스 클러스터링 기법 (EM Algorithm based Clustering Method for Internet of Things (IoT) Service)

  • 장준범;조정훈;이대원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.1315-1317
    • /
    • 2017
  • 다양한 IoT(사물인터넷) 서비스가 등장하고 수요가 많아짐에 따라 이를 통합적으로 관리하고 제어하는 통합 서비스 플랫폼에 관한 여구가 활발하게 진행되고 있다. 하지만 서비스의 표준 부재로 인하여 IoT 서비스 모듈의 재활용 및 이식은 불가능한 상황이다. 이러한 문제를 해결하기 위하여 본 연구에서는 IoT 서비스의 각 동작 단계에 EM 알고리즘을 적용하여 [1]의 동작기반 분류 기법을 확장한다. 제안한 EM 기반 IoT 서비스 분류 알고리즘은 서비스 유사도를 기반하여 분류 함으로 모듈의 재활용성을 높이고 서비스 간의 협업에 있어서 효율성 증대를 기대할 수 있다. 성능 평가를 통하여 평균에 대한 표준편차로 클러스터링되는 것을 확인 할 수 있다.

HAPS 기반 네트워크에서의 실시간 이동 기지국 위치 문제 해결 정책 (HAPS Network MBS placement with EM Clustering Algorithm)

  • 정웅희;송하윤;조관식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.1307-1310
    • /
    • 2008
  • EM(Expectation Maximization)은 불확실한 데이터들을 가지고 분포를 모델링하는, 널리 알려진 군집화 알고리즘이다. EM 알고리즘에서, 정규 분포는 기대(Expectation)-최대화(Maximization)과정을 반복하는 과정에서 그 윤곽을 다져간다. 이 때 이 과정은 EM 알고리즘의 다양한 확률 초기화에 따라 다른 결과를 내게 된다, 본 논문에서는 이 확률 초기화 값의 조정을 통하여 HAPS(High Altitude Platform Station) 기반 네트워크에서 이동 기지국의 위치를 실시간으로 결정하고자 하는 문제를 풀기 위한 조건을 몇 가지 반영시켜 확률 초기 값을 결정해 보고, 그 결과를 제시한다. 이에 더불어, ITU에서 제한하고 있는 이동 기지국의 서비스 반경을 고려하는 방법을 제시한다.

정보검색 성능 향상을 위한 단어 중의성 해소 모형에 관한 연구 (Improving the Retrieval Effectiveness by Incorporating Word Sense Disambiguation Process)

  • 정영미;이용구
    • 정보관리학회지
    • /
    • 제22권2호
    • /
    • pp.125-145
    • /
    • 2005
  • 이 연구에서는 문헌 및 질의의 내용을 대표하는 주제어의 중의성 해소를 위해 대표적인 지도학습 모형인 나이브 베이즈 분류기와 비지도학습 모형인 EM 알고리즘을 각각 적용하여 검색 실험을 수행한 다음 주제어의 중의성 해소를 통해 검색 성능의 향상을 가져올 수 있는지를 평가하였다. 실험문헌 집단은 약 12만 건에 달하는 한국어 신문기사로 구성하였으며, 중의성 해소 대상 단어로는 한국어 동형이의어 9개를 선정하였다. 검색 실험에는 각 중의성 단어를 포함하는 18개의 질의를 사용하였다. 중의성 해소 실험 결과 나이브 베이즈 분류기는 최적의 조건에서 평균 $92\%$의 정확률을 보였으며, EM 알고리즘은 최적의 조건에서 평균 $67\%$ 수준의 클러스터링 성능을 보였다. 중의성 해소 알고리즘을 통합한 의미기반 검색에서는 나이브 베이즈 분류기 통합 검색이 약 $39.6\%$의 정확률을 보였고, EM 알고리즘 통합 검색이 약 $36\%$의 정확률을 보였다. 중의성 해소 모형을 적용하지 않은 베이스라인 검색의 정확률 $37\%$와 비교하면 나이브 베이즈 통합 검색은 약 $7.4\%$의 성능 향상률을 보인 반면 EM 알고리즘 통합 검색은 약 $3\%$의 성능 저하율을 보였다.

클러스터링 방법을 이용한 방사능 정상수치의 동위원소별 오염 분석 (Analysis of Radioactive Contamination Normal Level of Numerical Isotope using Clustering Methods)

  • 정용규;최정아;차병헌
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.41-46
    • /
    • 2014
  • 여러 국가의 관련기관들은 지역 별로 방사능 정상범위를 제시해 주기적으로 검사하고 있으며 우리나라 역시 방사능 대책 인프라를 구축하여 항시 대비하고 있다. 특히 일본 후쿠시마 피폭사건과 같은 방사능오염이 빈번하게 발생함에 따라 방사능에 대한 사람들의 인식이 위험수준으로 변화하고 있다. 본 데이터는 방사능 정상수치와 관련해 미국정부에서 수집을 하여 각 속성정보들을 파악하고 초과한 수치를 비교분석하였다. 분석 방법으로는 군집화를 사용하고, 특히 EM 알고리즘과 SimpleKMeans 알고리즘을 토대로 실험하였다. 그 결과 정상범위 수치가 높을수록 초과할 확률이 높은 것으로 나타났으며 시간적비용이나 분석정도에 따라 사용할 알고리즘이 다를 수 있다는 것도 알 수 있다. 따라서 정상범위가 높은 지역일수록 해당 기관부처나 정부에서는 조사 빈도수를 높여 반영해야 한다.

관심영역 추출과 통합에 의한 적외선 영상 분할 (Infrared Image Segmentation by Extracting and Merging Region of Interest)

  • 염석원
    • 한국지능시스템학회논문지
    • /
    • 제26권6호
    • /
    • pp.493-497
    • /
    • 2016
  • 적외선 영상은 야간에 표적의 탐지가 가능하여 보완과 감시분야에 활용도가 높다. 그러나 가시광선 영상에 비하여 해상도가 낮고 잡음의 영향이 크다는 단점이 있다. 본 논문에서는 적외선 영상의 표적을 분할하는 방법을 연구한다. 표적을 포함하는 다수의 관심영역(Region of Interest)을 다단계 분할 방법을 이용하여 추출하고 관심영역을 입력영상으로 다단계 분할방법을 다시 적용하여 표적을 분할한다. 다단계 분할 방법의 각 단계는 가우시안 혼합모델의 파라미터를 초기화 하고 추정하는 k-means 클러스터링(Clustering)과 EM(Expectation-Maximization) 알고리즘과 추정된 사후확률을 이용하여 각 화소의 클러스터를 결정하는 단계로 구성된다. 본 논문에서 추출된 관심영역을 선택하고 통합하는 방법을 제안한다. 관심영역의 통합은 근접한 모든 관심영역의 윈도우를 포함하도록 이루어진다. 실험에서는 야간의 보행자로부터 획득한 적외선 영상에 제안된 방법을 적용하고 다른 분할 방법과 비교하여 제안한 방법이 우수함을 보인다.

A Density-based Clustering Method

  • Ahn, Sung Mahn;Baik, Sung Wook
    • Communications for Statistical Applications and Methods
    • /
    • 제9권3호
    • /
    • pp.715-723
    • /
    • 2002
  • This paper is to show a clustering application of a density estimation method that utilizes the Gaussian mixture model. We define "closeness measure" as a clustering criterion to see how close given two Gaussian components are. Closeness measure is defined as the ratio of log likelihood between two Gaussian components. According to simulations using artificial data, the clustering algorithm turned out to be very powerful in that it can correctly determine clusters in complex situations, and very flexible in that it can produce different sizes of clusters based on different threshold valuesold values

Model-based Clustering of DOA Data Using von Mises Mixture Model for Sound Source Localization

  • Dinh, Quang Nguyen;Lee, Chang-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.59-66
    • /
    • 2013
  • In this paper, we propose a probabilistic framework for model-based clustering of direction of arrival (DOA) data to obtain stable sound source localization (SSL) estimates. Model-based clustering has been shown capable of handling highly overlapped and noisy datasets, such as those involved in DOA detection. Although the Gaussian mixture model is commonly used for model-based clustering, we propose use of the von Mises mixture model as more befitting circular DOA data than a Gaussian distribution. The EM framework for the von Mises mixture model in a unit hyper sphere is degenerated for the 2D case and used as such in the proposed method. We also use a histogram of the dataset to initialize the number of clusters and the initial values of parameters, thereby saving calculation time and improving the efficiency. Experiments using simulated and real-world datasets demonstrate the performance of the proposed method.

평균 이동 알고리즘 기반의 지지 벡터 영역 표현 방법 (Support Vector Data Description using Mean Shift Clustering)

  • 장형진;김표재;최정환;최진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.307-309
    • /
    • 2007
  • SVDD의 scale prob1em을 해결하기 위하여, 학습 데이터를 sub-groupings하여 group 단위로 SVDD를 통해 학습함으로써 학습 시간을 줄이는, K-means clustering을 이용한 SVDD 방범(KMSVDD)이 제안되었다. 하지만 KMSVDD는 K-means clustering 알고리즘의 본질상 최적의 K값을 정하기 힘들다는 문제와, 동일한 데이터를 학습할지라도 clustered group이 램덤하게 형성되기 때문에 매번 학습의 결과가 달라지는 문제점이 있었다. 또한 데이터의 분포 상태와 관계없이 무조건 타원(dlliptic) 형태의 K개의 cluster로 나누기 때문에 각각의 나눠진 cluster들은 데이터 분포에 대한 특징을 나타내기 힘들게 된다. 이러한 문제점을 해결하기 위하여 본 논문에서는 데이터 분포에서 mode를 먼저 찾은 후 이 mode를 기준으로 clustering하는 Mean Shift clustering 방법을 이용한 SVDD를 제안하고자 한다. 제안된 알고리즘은 KMSVDD와 비교해 데이터 학습 속도에서는 큰 차이가 없으면서도 데이터의 분포 상태를 고려한 형태로 clustering 한 sub-group을 학습하므로 학습의 정확도가 일정하게 되며, 각각의 cluster는 데이터 분표의 특징을 포함하는 효과가 있다. 또한 Mean Shift Kernel의 bandwidth의 결정은 K-Means의 K와는 달리 어느 정도 여유를 갖고 결정되어도 학습 결과에는 차이가 없다. 다양한 데이터들을 이용한 모의실험을 통하여 위의 내용들을 검증하도록 한다.

  • PDF

투영 변환 블록 계수를 이용한 피부 색소 침착 검출 (Skin Pigmentation Detection Using Projection Transformed Block Coefficient)

  • 류양;이석환;권성근;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제16권9호
    • /
    • pp.1044-1056
    • /
    • 2013
  • 본 논문에서는 피부 색소 침착 영역을 검출하고 침착 정도를 측정하는 알고리즘을 제안한다. 제안한 알고리즘에서는 먼저 훈련 영상(training image)의 통계적 분석을 통해 피부 영역에 대한 GMM-EM 클러스터링 기반 컬러 모델을 구축하고 이를 통해 피부 영역을 추출한 후, 형태학적 처리(morphological processing)를 통해 피부 영역에 존재하는 잡음을 제거한다. 이후 ICA (independent component analysis) 알고리즘을 통해 피부 영역을 헤모글로빈 및 멜라닌 성분으로 분리하고, 각 성분에 대한 투영 변환 블록 계수에 의하여 색소 침착 영역 및 크기를 결정한다. 성능 평가를 위한 모의실험으로부터 제안한 색소 침착 검출 알고리즘은 피부 색소 침착 영역의 크기 및 침착 정도를 정확하게 검출할 수 있음을 확인하였다.

EM 알고리즘에 의한 뉴로-퍼지 시스템의 퍼지 규칙 생성 (Fuzzy rule Extraction of Neuro-Fuzzy System using EM algorithm)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.170-173
    • /
    • 2002
  • 본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)에서의 효과적인 퍼지 규칙 생성방법을 제안한다. ANFIS의 성능 개선을 위해 구조동정을 수행함에 있어서 전제부 파라미터는 EM(Expectation-Maximization) 알고리즘을 적용하였으며, 파라미터학습은 Jang에 의한 하이브리드 방법을 적용한다. 여기서 초기의 중심과 분산을 구하기 위해 FCM(Fuzzy c-means) 클러스터링 기법을 사용하였다. 이렇게 함으로서 적은 규칙 수를 가지면서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 이들 방법의 유용함을 보이고자 Box-Jenkins의 가스로 데이터에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 보이고자 한다

  • PDF