• 제목/요약/키워드: EM Clustering

검색결과 65건 처리시간 0.022초

점증적으로 증가하는 타원형 군집화 : 피부색 영역 검출에의 적용 (Elliptical Clustering with Incremental Growth and its Application to Skin Color Region Segmentation)

  • 이경미
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권9호
    • /
    • pp.1161-1170
    • /
    • 2004
  • 본 논문에서는 군집화 알고리즘을 사용하여 피부색 영역을 분할하는 방법을 제안한다. 기존의 군집화 알고리즘들의 대부분은 주로 구형의 군집을 검출하고, 배치형으로 수행되며, 군집의 개수를 미리정해야 한다는 문제점을 가지고 있다. 본 논문에서는 대표적인 타원형 군집화 알고리즘인 EM 알고리즘을 변형하여, 온라인으로 학습가능하며, 군집의 개수를 자동적으로 찾아낼 수 있는 EAM 알고리즘을 사용하였다. EAM 알고리즘외 유효성은 피부색 영역 분할에 대해 증명되었다. 실험결과는 군집의 개수가 미리 주어지지 않더라도, EAM 알고리즘은 주어진 영상에 대해 자동적으로 옳은 군집의 개수를 찾아냈고, EM 알고리즘과 비교하여 더 좋은 분할 결과를 보여주고 있다. 영역에 대한 조건부 확률을 이용하여 성공적인 피부색 영역의 탐지 및 분할 결과를 얻었다. 또한 사람이 포함된 영상을 분류하는 문제에도 적용하여 좋은 분류 결과를 얻었다.

다중해상도 kd-트리와 클러스터 유효성을 이용한 점증적 EM 알고리즘과 이의 영상 분할에의 적용 (Incremental EM algorithm with multiresolution kd-trees and cluster validation and its application to image segmentation)

  • 이경미
    • 한국지능시스템학회논문지
    • /
    • 제25권6호
    • /
    • pp.523-528
    • /
    • 2015
  • 본 논문은 효율적인 영상 분할을 수행하기 위한 다중해상도와 동적인 성질을 가지고 있는 새로운 EM 알고리즘을 제안한다. EM 알고리즘은 가장 많이 사용되고 성능이 우수한 클러스터링 방법이다. 그러나, 기존의 EM 알고리즘은 다중해상도 데이터 처리에 대한 문제점과 클러스터 개수에 대한 사전 지식 요구라는 단점을 가지고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해서 E-단계에 다중해상도 kd-트리를 적용함으로써 다중해상도 데이터 처리 문제를 해결하였고, 순차적 데이터에 따라 클러스터를 할당할 수 있데 하였다. 클러스터의 유효성을 검사하기 위해서, 클러스터 병합 원칙을 이용한다. 본 논문에서는 제안하는 알고리즘을 텍스쳐 영상 분할에 적용하였고, 우수한 성능을 보였다.

Pattern Analysis and Performance Comparison of Lottery Winning Numbers

  • Jung, Yong Gyu;Han, Soo Ji;kim, Jae Hee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제6권1호
    • /
    • pp.16-22
    • /
    • 2014
  • Clustering methods such as k-means and EM are the group of classification and pattern recognition, which are used in management science and literature search widely. In this paper, k-means and EM algorithm are compared the performance using by Weka. The winning Lottery numbers of 567 cases are experimented for our study and presentation. Processing speed of the k-means algorithm is superior to the EM algorithm, which is about 0.08 seconds faster than the other. As the result it is summerized that EM algorithm is better than K-means algorithm with comparison of accuracy, precision and recall. While K-means is known to be sensitive to the distribution of data, EM algorithm is probability sensitive for clustering.

HAP 기반 네트워크에서의 EM 알고리즘을 사용한 실시간 이동 기지국 배치 (Realtime Mobile Base Station Placement with EM Algorithm for HAP based Network)

  • 정웅희;송하윤
    • 정보처리학회논문지C
    • /
    • 제17C권2호
    • /
    • pp.181-189
    • /
    • 2010
  • HAP(High Altitude Platform)은 지표면 17~22km위에 있는 성층권 영역에서 운행하는 정지 궤도 공중 플랫폼으로 공중에서의 MBS(Mobile Base Station)로서의 역할이 가능하다. HAP 기반 네트워크는 인공위성 시스템과 지상통신 시스템의 장점들을 가지고 있다. 본 논문에서는 HAP 기반망의 구성 및 그 유지를 위한 HAP MBS의 배치에 대해 연구한다. 이 연구를 위해 지상 이동 노드들을 클러스터링하기 위한 클러스터링 알고리즘이 사용되는데, 본 논문에서는 EM(Expectation Maximization) 클러스터링 알고리즘을 사용한다. 본 논문의 목표는 이동 통신 단말기들 간의 거리와, 각 단말기들의 이동속도를 고려하여 단말기들이 효율적으로 클러스터링 되어 HAP의 배치가 효율적일 수 있도록 EM 알고리즘을 적용 및 개선하고, 이 EM 알고리즘을 이용한 HAP MBS 배치기법을 인구밀도에 기반을 둔 RWP(Random Waypoint) 노드 모빌리티를 이용하여 그 성능을 평가한다.

Normal Mixture Model with General Linear Regressive Restriction: Applied to Microarray Gene Clustering

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • 제14권1호
    • /
    • pp.205-213
    • /
    • 2007
  • In this paper, the normal mixture model subjected to general linear restriction for component-means based on linear regression is proposed, and its fitting method by EM algorithm and Lagrange multiplier is provided. This model is applied to gene clustering of microarray expression data, which demonstrates it has very good performances for real data set. This model also allows to obtain the clusters that an analyst wants to find out in the fashion that the hypothesis for component-means is represented by the design matrices and the linear restriction matrices.

새로운 고속 EM 알고리즘 (A New Fast EM Algorithm)

  • 김성수;강지혜
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제31권10호
    • /
    • pp.575-587
    • /
    • 2004
  • 본 논문은 여러 분야에서 활용될 수 있는 향상된 고속 Expectation-Maximization(FEM) 알고리즘을 제안한다. 첫째, EM의 초기값 설정의 방법으로 많이 사용되고 있는 클러스터링 기법인 K-means의 문제점을 해결하여 개선된 EM의 초기값 선정에 적용하였다. 이것은 기존 K-means 알고리즘에서 임의로 지정하던 랜덤한 초기값 선정을, 데이타 분포 특성을 이용한 균등 분할법을 사용하여 EM의 초기값 문제를 해결하였다. 둘째, EM 과정의 핵심을 이루는 후행 확률(Posterior)의 의미를 부각하여 최대 가능성 후행 확률(Maximum Likelihood Posterior: MLP)과정을 적용하였다. 최종적으로, 본 논문에서 제안한 고속 EM알고리즘(FEM)은 근본적으로 해결하기 못했던 기존의 EM 초기치 선정과 수렴에 대한 문제점을 개선함으로써, EM 알고리즘의 특성을 극대화하는 방향으로 상대적으로 마른 수렴과 향상된 결과를 가져온다. 제안된 알고리즘의 객관적 타당성을 위해 기존의 방법과 제안된 방법에 의한 시뮬레이션의 결과를 여러 데이타들을 가지고 비교 분석하여 제안한 알고리즘의 우수성을 입증하였다.

EM 클러스터링을 이용한 SSH 트래픽 식별 (SSH Traffic Identification Using EM Clustering)

  • 김경륜;김명섭;김형중
    • 한국통신학회논문지
    • /
    • 제37B권12호
    • /
    • pp.1160-1167
    • /
    • 2012
  • 네트워크 트래픽 모니터링에 있어서 트래픽을 사용하는 목적을 알아내는 것은 서비스 품질, 방화벽의 동작, 보안 측면에 있어서 중요한 이슈가 되고 있다. 트래픽을 사용하는 목적을 알게 되면 이를 방화벽에서 거부하거나 허용할 수 있고 이는 서비스 품질, 보안적 측면에서 효과적인 운용이 가능해진다. 하지만 수많은 어플리케이션은 보안이나 서비스 측면에서 트래픽을 암호화시키고 있어 효과적인 트래픽 모니터링이 어렵다. 본 논문에서는 암호화된 트래픽을 사용하는 SSH(Secure Shell) 프로토콜을 분석하고 SSH 터널링, SFTP(SSH File Transfer Protocol)와 일반 SSH 트래픽의 차이점을 분석하고 식별할 수 있는 방법을 제시하고 실험을 통해 검증했다.

Recommendation of Optimal Treatment Method for Heart Disease using EM Clustering Technique

  • Jung, Yong Gyu;Kim, Hee Wan
    • International Journal of Advanced Culture Technology
    • /
    • 제5권3호
    • /
    • pp.40-45
    • /
    • 2017
  • This data mining technique was used to extract useful information from percutaneous coronary intervention data obtained from the US public data homepage. The experiment was performed by extracting data on the area, frequency of operation, and the number of deaths. It led us to finding of meaningful correlations, patterns, and trends using various algorithms, pattern techniques, and statistical techniques. In this paper, information is obtained through efficient decision tree and cluster analysis in predicting the incidence of percutaneous coronary intervention and mortality. In the cluster analysis, EM algorithm was used to evaluate the suitability of the algorithm for each situation based on performance tests and verification of results. In the cluster analysis, the experimental data were classified using the EM algorithm, and we evaluated which models are more effective in comparing functions. Using data mining technique, it was identified which areas had effective treatment techniques and which areas were vulnerable, and we can predict the frequency and mortality of percutaneous coronary intervention for heart disease.

새로운 초기치 선정 방법을 이용한 향상된 EM 알고리즘 (Improved Expectation and Maximization via a New Method for Initial Values)

  • 김성수;강지혜
    • 한국지능시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.416-426
    • /
    • 2003
  • 본 논문은 시스템 공학의 인식에 관련된 여러 분야에서 널리 쓰이는 클러스터링 기법인 Expectation-Maximization의 초기값 설정문제에 관하여 새로운 방법을 제안한다. 기존의 임의로 지정하는 랜덤한 초기치 선정 문제점을 지적하고, 새로이 제안하는 균등 영역 분할과 분할 된 데이터의 통계적 특성을 이용한 초기치 설정 방법을 사용한 새로운 EM 알고리즘을 제안한다. 일반적으로 EM에서 초기값 설정 방법으로 랜덤한 설정 방식의 약점을 보완하기 위하여 K-means 방법을 많이 사용하고 있다. 하지만, K-means 초기치 설정 방법도 근본적인 문제는 해결하지 못하고 있다. 이러한 문제의 하나의 해결 방안으로 논문이 제안한 균등 분할 및 통계적 특성을 이용한 초기치 선정의 방법을 EM 알고리즘에 적용하였다. 제안된 방법은 기존보다 EM 알고리즘의 특성을 극대화하는 방향으로 더 좋은 결과를 가져온다. 본 논문에서 제안된 알고리즘의 우수성을 제안한 초기치 선정 방법을 적용한 EM과 기존 EM의 시뮬레이션 결과를 비교 분석하여 그 우수성을 제시하였다.

그래프 이론 기반의 클러스터링을 이용한 영상 감시 시스템 시야 내의 출입 영역 검출 (Detection of Entry/Exit Zones for Visual Surveillance System using Graph Theoretic Clustering)

  • 우하용;김경환
    • 전자공학회논문지SC
    • /
    • 제46권6호
    • /
    • pp.1-8
    • /
    • 2009
  • 여러 대의 카메라를 이용한 감시 시스템이 정확하고 효율적으로 동작하기 위하여 카메라 시야 간의 연결 관계를 아는 것이 필수적이다. 카메라들의 연결 관계를 파악하기 위하여 카메라 시야 내의 출입 영역을 검출하는 일이 선행되어야 한다. 본 논문에서는 카메라 시야에서 객체의 등장 및 퇴장으로부터 얻은 데이터에 그래프 이론 기반의 클러스터링(clustering)을 적용하여 시야 내의 출입 영역을 검출하는 방법을 제안한다. 데이터 포인트들 사이의 관계를 조사하여 최소신장트리를 구성하고, 트리의 에지들 중 일관성을 갖지 않는 것들을 삭제하여 well-formed 클러스터를 얻는다. 본 논문에서는 클러스터의 형태를 설명하는 두 가지 특징을 정의하고 이를 클러스터의 분할 조건으로 사용하였다. 실험결과를 통하여 데이터 포인트의 분포가 조밀하지 않은 경우 expectation maximization(EM)에 기반을 둔 방법에 비하여 치안하는 방법이 보다 효과적으로 클러스터링을 수행함을 확인하였다. 또한 EM 기반 방법들에 비하여 안정적인 결과를 얻기 위해 필요한 데이터 포인트의 개수가 적으므로 출입영역에 대한 학습시간을 단축할 수 있다.