• Title/Summary/Keyword: ELF(Extremely Low Frequency)

Search Result 73, Processing Time 0.028 seconds

The Effect of Extremely Low Frequency Electromagnetic Fields on the Chromosomal Instability in Bleomycin Treated Fibroblast Cells (Bleomycin이 처리된 사람 섬유아세포에서 극저주파 전자기장의 효과)

  • Cho, Yoon-Hee;Kim, Yang-Jee;Lee, Joong-Won;Kim, Gye-Eun;Chung, Hai-Won
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.161-166
    • /
    • 2008
  • In order to determine the effect of extremely low frequency electromagnetic fields (ELF-EMF) on the frequency of micronuclei (MN), aneuploidy and chromosomal rearrangement induced by bleomycin (BLM) in human fibroblast cells, a 60 Hz ELF-EMF of 0.8 mT field strength was applied either alone or with ELM throughout the culture period and a micronucleus-centromere assay was performed. Our results indicate that the frequencies of MN, aneuploidy and chromosomal rearrangement induced by ELM increased in a dose-dependent manner. The exposure of cells to 0.8 mT ELF-EMF followed by ELM exposure for 3 hours led to significant increases in the frequencies of MN and aneuploidy compared to BLM treatment for 3 hours alone (p<0.05), but no significant difference was observed between field exposed and sham exposed control cells. The obtained results suggest that low density ELF-EMF could act as an enhancer of the initiation process of BLM rather than as an initiator of mutagenic effects in human fibroblast.

A Study on Characteristics and Safety Criteria for Human Body in ELF Electric and Magnetic Fields (ELF 전자계 특성 및 인체 안전기준에 관한 연구)

  • 김두현;김상철
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.3
    • /
    • pp.34-43
    • /
    • 1993
  • This paper presents a study on the characteristics and safety criteria for human body in ELF (Extremely Low Frequency : 50-60Hz) electric and magnetic fields. Many researches for ELF electric and magnetic fields, which are developed in the past, are studied and analyzed In this paper. In order to estabilish the safety criteria for human body in the field, the field intensity, induced current and voltage are calculated by the electrostatic field approach which is far simpler than the electromagnetic field one based on Maxwell equation. The method is applied to the 345 KV transmission line system In operation and 765 KV system under consideration. According to the results, the maximum value of field intensity, 6.8627KV/m, is evaluated at the location which is 14m away from transmission line. As the safety criteria value by the abroad researches asserting that the human can detect the Induced current in 6KV/m and above, 5KV/m and 7KV/m are recommended at residence area and nonresidence area, respectively.

  • PDF

ELF Electric and Magnetic Fields under the Transmission Line Including Electric Power System States (계통상태를 고려한 송전선의 ELF 전자계)

  • 김두현;김상철
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.89-96
    • /
    • 1996
  • This paper presents a study on the analysis and evaluation for ELF( Extremely Low Frequency) electric and magnetic fields under the transmission line according to the power system states. The power system states are classified into two types, normal state resulting from normal operation and alert state from outages. The current in a system is changed continually owing to the load fluctuations even in a normal operation. To calculate the current of the concerned line in a normal state, the system load level is devided into light, base and heavy load level. In case of contingency, an efficient algorithm based on matrix inversion lemma is developed to figure out the current changes. In order to analyze the variations of ELF field caused by the current fluctuations the electrostatic field approach which is far simpler than the electromagnetic field one based on Maxwell equation is introduced in this paper. The suggested method is applied to the IEEE 14 bus system to demonstrate the usefulness.

  • PDF

Effect of Extremely Low Frequency Magnetic Fields on Gene Expression in Human Mammary Epithelial MCF10A Cells

  • Hong, Mi-Na;Lee, Hyung-Chul;Kim, Bong Cho;Lee, Yun-Sil;Gimm, Yoon-Myung;Myung, Sung-Ho;Lee, Jae-Seon
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.271-279
    • /
    • 2012
  • The effects of extremely low frequency magnetic fields (ELF-MFs) on physiological processes at the cellular level remain unclear despite a number of studies. To investigate the effects of ELF-MFs on gene expression, we exposed human mammary epithelial MCF10A cells to fields of 1 mT magnetic flux density at 60 Hz for 4 and 16 h and measured the transcriptional responses of 24,000 genes using Illumina microarrays. In three independent experiments, we found no statistically significant alteration of expression levels for any of the genes assayed using a cutoff value of 1.2-fold. To confirm this result, we selected six genes with trends suggesting possible expression level changes, although these trends were not statistically significant, and investigated their expression levels further using a semiquantitative reverse-transcription polymerase chain reaction. In three independent experiments, we did not find any alterations in the expression levels of these genes. From these results, we conclude that ELF-MFs do not affect gene expression profiles under our exposure conditions.

Developments of Extremely Low Frequency Electric Field Sensor using Guided-wave Optical Modulator (광도파로형 초저주파(ELF) 전계계측 센서의 개발)

  • Choe, Yeong-Gyu;Kim, Mun-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.1-7
    • /
    • 2002
  • The use of an asymmetric Mach-Zehnder interferometric amplitude modulator to measure a relatively low frequency electric field strength is described. The sensitivity of an electric field sensor using a Ti:LiNbO$_3$ optical modulator is strongly affected by the shape of a electrode(probe antenna). To measure the low frequency electric field, a probe antenna of wide effective area is more useful than the usual dipole antenna. As a proof of this, the optical modulator was fabricated with a plate-type probe antenna and the usefulness of this antenna tested for measuring low frequency electric field strength. Measurements were performed in the range 0.1V/cm to 60V/cm at 60Hz through 100KHz. Using a probe antenna of 10mm$\times$10mm, the output voltage of 10㎷ was measured with respect to the electric field strength of 0.1V/cm at 60Hz. By increasing the effective area of the probe antenna, better sensitivity is obtainable over the measured range.

Effects of Electromagnetic Radiation Exposure on Stress-Related Behaviors and Stress Hormones in Male Wistar Rats

  • Mahdavi, Seyed Mohammad;Sahraei, Hedayat;Yaghmaei, Parichehreh;Tavakoli, Hassan
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.570-576
    • /
    • 2014
  • Studies have demonstrated that electromagnetic waves, as the one of the most important physical factors, may alter cognitive and non-cognitive behaviors, depending on the frequency and energy. Moreover, non-ionizing radiation of low energy waves e.g. very low frequency waves could alter this phenomenon via alterations in neurotransmitters and neurohormones. In this study, short, medium, and long-term exposure to the extremely low frequency electromagnetic field (ELF-EMF) (1 and 5 Hz radiation) on behavioral, hormonal, and metabolic changes in male Wistar rats (250 g) were studied. In addition, changes in plasma concentrations for two main stress hormones, noradrenaline and adrenocorticotropic hormone (ACTH) were evaluated. ELF-EMF exposure did not alter body weight, and food and water intake. Plasma glucose level was increased and decreased in the groups which exposed to the 5 and 1Hz wave, respectively. Plasma ACTH concentration increased in both using frequencies, whereas noradrenaline concentration showed overall reduction. At last, numbers of rearing, sniffing, locomotor activity was increased in group receiving 5 Hz wave over the time. In conclusions, these data showed that the effects of 1 and 5 Hz on the hormonal, metabolic and stress-like behaviors may be different. Moreover, the influence of waves on stress system is depending on time of exposure.

Relationship Between Urinary Melatonin Levels and Extremely Low Frequency Magnetic Fields for the Selected Primary Schoolchildren Living Nearby and Away from Overhead Transmission Power Line (송전선로 주변과 비주변 초등학생을 대상으로 극저주파 자기장 노출과 뇨중 멜라토닌 분비량간의 상관성 연구)

  • Cho, Yong-Sung;Kim, Yoon-Shin;Lee, Jong-Tae;Hong, Seung-Cheol;Jang, Seong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.191-206
    • /
    • 2004
  • The present study investigated the hypothesis that a extremely low frequency magnetic field partially suppresses the synthesis of melatonin in a group of 28 primary schoolchildren living nearby and 60 primary schoolchildren aged 12 years living far away from overhead transmission power lines from December 2003 to April 2004 in Seoul, Korea. The mean personal exposure levels of the primary schoolchildren living nearby overhead transmission power line were 0.37 ${\mu}$T, whereas the value for the primary schoolchildren living away from overhead transmission power line 0.05 mT. From simple analyses, the mean melatonin levels in the primary schoolchildren living nearby were lower than away from overhead transmission power line, but not statistically significant differences in the levels of the melatonin (p=0.2421), whereas the statistically significant differences in the levels of the melatonin related to the distance from residence to power line less and more than 100 m by cut-off point (p=0.0139). In multiple linear regression analyses, distance from residence to power line (p=0.0146) and dietary habit about burned meat (p=0.0170) proved to be significant risk factors in the mean nocturnal melatonin levels in the primary schoolchildren. In conclusion, these results demonstrate that urinary levels of nocturnal melatonin are not altered in primary schoolchildren exposed to extremely low frequency magnetic field(ELF-MF) at overhead transmission power line.

Study on EMI Elimination and PLN Application in ELF Band for Romote Sensing with Electric Potentiometer (전위계차 센서를 이용한 원격센싱을 위한 ELF 대역 EMI 제거 및 PLN 응용 연구)

  • Jang, Jin Soo;Kim, Young Chul
    • Smart Media Journal
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2015
  • In this paper, we propose the methods not only to eliminate ELF(Extremely Low Frequency) EMI(Electro-Magnetic Interference) noice for extending recognition distance, but also to utilize the the PLN for detecting starting instance of a hand gesture using electric potential sensor. First, we measure strength of electric field generated in the smart devices such as TV and phone, and minimize EMI through efficient arrangement of the sensors. Meanwhile, we utilize the 60 Hz PLN to extract the starting point of hand gesture. Thereafter, we eliminate the PLN generated in the smart device and circuit of sensors. And then, we shield the sensors from an electric noise generated from devices. Finally, through analyzing the frequency components according to the gesture of target, we use the low pass filter and the Kalman filter for elimination of remaining electric noise. We analyze and evaluate the proposed ELF-band EMI eliminating method for non-contact remote sensing of the EPS(Electric Potential Sensor). Combined with a detecting technique of gesture starting point, the recognition distance for gestures has been proven to be extended to more than 3m, which is critical for real application.

Study on Prediction Method for ELF Transient Magnetic Field from Home Appliances (가전기기에서 발생되는 극저주파 과도자계 예측기법 연구)

  • Ju, Mun-No;Yang, Kwang-Ho;Myung, Sung-Ho;Min, Suk-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.616-621
    • /
    • 2002
  • With biological effects by ELF (Extremely Low Frequency) magnetic field generated from power system, the transient magnetic field from electric appliances is a major issue presently. Because the transient magnetic field induces higher current than the power frequency field inside living bodies, transient magnetic field exposure has been much focused. In this paper, it is shown that transient magnetic field from electric home appliances can be characterized as magnetic dipole moment. In this method, the dipole moment vector is assumed by allowing an uncertainty of 6dB in the estimated field. A parameter M that represents biological interaction was applied also. The proposed method was applied to 7 types of appliances (hair drier, heater, VDT, etc.) and their equivalent magnetic dipole moment and harmonic components were estimated. As the results, the useful data for quantifying magnetic field distribution around electric appliances were obtained.

Extremely Low Frequency Magnetic Fields Modulate Bicuculline-Induced-Convulsion in Rats

  • Jeong, Ji-Hoon;Choi, Kyung-Bum;Choi, Hee-Jung;Song, Hyun-Ju;Min, Young-Sil;Ko, Sung-Kwon;Im, Byung-Ok;Sohn, Uy-Dong
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.587-591
    • /
    • 2005
  • The effect of extremely low frequency (ELF,60Hz) magnetic fields (MFs) on convulsions was investigated in rats. We determined the onset arid duration of convulsions induced by bicuculline alone or by co-exposure to MFs and bicuculline. In addition, we measured the GABA concentrations in the rat brains using HPLC-ECD. MFs strengthened the convulsion induced by bicuculline (0.3, 1, and 3${\mu}g$, I.c.v.), with a shortening of the onset time, but lengthening of the duration time. Co-exposure to MFs and bicuculline decreased the GABA levels in the cortex, hippocampus and hypothalamus, whereas MFs alone reduced the level of GABA only in the hippocampus. These results suggest that the exposure to MFs may modulate bicuculline-induced convulsions due to GABA neurotransmissions in rat brains.