DOI QR코드

DOI QR Code

Effects of Electromagnetic Radiation Exposure on Stress-Related Behaviors and Stress Hormones in Male Wistar Rats

  • Mahdavi, Seyed Mohammad (Department of Biology, Science and research Branch, Islamic Azad University) ;
  • Sahraei, Hedayat (Neuroscience Research Center, Bagiyatallah University of Medical Sciences) ;
  • Yaghmaei, Parichehreh (Department of Biology, Science and research Branch, Islamic Azad University) ;
  • Tavakoli, Hassan (Neuroscience Research Center, Bagiyatallah University of Medical Sciences)
  • Received : 2014.05.09
  • Accepted : 2014.07.21
  • Published : 2014.11.30

Abstract

Studies have demonstrated that electromagnetic waves, as the one of the most important physical factors, may alter cognitive and non-cognitive behaviors, depending on the frequency and energy. Moreover, non-ionizing radiation of low energy waves e.g. very low frequency waves could alter this phenomenon via alterations in neurotransmitters and neurohormones. In this study, short, medium, and long-term exposure to the extremely low frequency electromagnetic field (ELF-EMF) (1 and 5 Hz radiation) on behavioral, hormonal, and metabolic changes in male Wistar rats (250 g) were studied. In addition, changes in plasma concentrations for two main stress hormones, noradrenaline and adrenocorticotropic hormone (ACTH) were evaluated. ELF-EMF exposure did not alter body weight, and food and water intake. Plasma glucose level was increased and decreased in the groups which exposed to the 5 and 1Hz wave, respectively. Plasma ACTH concentration increased in both using frequencies, whereas noradrenaline concentration showed overall reduction. At last, numbers of rearing, sniffing, locomotor activity was increased in group receiving 5 Hz wave over the time. In conclusions, these data showed that the effects of 1 and 5 Hz on the hormonal, metabolic and stress-like behaviors may be different. Moreover, the influence of waves on stress system is depending on time of exposure.

Keywords

References

  1. Adey, W. R. (1993) Biological effects of electromagnetic fields. J. Cell. Biochem. 51, 410-416. https://doi.org/10.1002/jcb.2400510405
  2. Athanasiou, A., Karkambounas, S., Batistatou, A., Lykoudis, E., Katsaraki, A., Kartsiouni, T., Papalois, A. and Evangelou, A. (2007) The effect of pulsed electromagnetic fields on secondary skin wound healing: An experimental study. Bioelectromagnetics 28, 362-368. https://doi.org/10.1002/bem.20303
  3. Avendano, C., Mata, A., Sanchez Sarmiento, C. A. and Doncel, G. F. (2012) Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertil. Steril. 97, 39-45. e2. https://doi.org/10.1016/j.fertnstert.2011.10.012
  4. Balassa, T., Szemerszky, R. and Bardos, G. (2009) Effect of shortterm 50 Hz electromagnetic field exposure on the behavior of rats. Physiol. Hung. 96, 437-448. https://doi.org/10.1556/APhysiol.96.2009.4.4
  5. Bullmore, E. and Sporns, O. (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186-198. https://doi.org/10.1038/nrn2575
  6. Ciccocioppo, R., Martin-Fardon, R., Weiss, F. and Massi, M. (2001) Nociceptin/orphanin FQ inhibits stress-and CRF-induced anorexia in rats. Neuroreport 12, 1145-1149. https://doi.org/10.1097/00001756-200105080-00019
  7. Coleman, M. and Bera, V. (1988) A review of epidemiological studies of the health effects of living near or working with electricity generation and transmission equipment. Int. J. Epidemiol. 17, 1-13. https://doi.org/10.1093/ije/17.1.1
  8. Czyrak, A., Mackowiak, M., Chocyk, A., Fijal, K. and Wedzony, K. (2003) Role of glucocorticoids in the regulation of dopaminergic neurotransmission. Pol. J. Pharmacol. 55, 667-674.
  9. Fernie, K. J. and Bird, D. M. (2001) Evidence of oxidative stress in American kestrels exposed to electromagnetic fields. Environ. Res. 86, 198-207. https://doi.org/10.1006/enrs.2001.4263
  10. Feychting, M., Ahlbom, A. and Kheifets, L. (2005) EMF and health. Annu. Rev. Public Health 26, 165-189. https://doi.org/10.1146/annurev.publhealth.26.021304.144445
  11. Grassi, C., D'Ascenzo, M., Torsello, A., Martinotti, G., Wolf, F., Cittadini, A. and Azzena, G. B. (2004) Effects of 50Hz electromagnetic fields on voltage-gated $Ca^{2+}$ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35, 307-315. https://doi.org/10.1016/j.ceca.2003.09.001
  12. Grundler, W., Kaiser, F., Keilmann, F. and Walleczek, J. (1992) Mechanisms of electromagnetic interaction with cellular systems. Naturwissenschaften 79, 551-559. https://doi.org/10.1007/BF01131411
  13. Gunnar, M. and Quevedo, K. (2007) The neurobiology of stress and development. Annu. Rev. Psychol. 58, 145-173. https://doi.org/10.1146/annurev.psych.58.110405.085605
  14. Haarala, C., Bjornberg, L., Ek, M., Laine, M., Revonsuo, A., Koivisto, M. and Hamalainen, H. (2003) Effect of a 902 MHz electromagnetic field emitted by mobile phones on human cognitive function: A replication study. Bioelectromagnetics 24, 283-288. https://doi.org/10.1002/bem.10105
  15. Hayakawa, M. (2004) Electromagnetic phenomena associated with earthquakes: A frontier in terrestrial electromagnetic noise environment. Recent Res. Devel. Geophysics 6, 81-112.
  16. Karatsoreos, I. N. and McEwen, B. S. (2011) Psychobiological allostasis: resistance, resilience and vulnerability. Trends Cogn. Sci. 15, 576-584. https://doi.org/10.1016/j.tics.2011.10.005
  17. Kerr, J. F., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  18. Kheifets, L., Repacholi, M., Saunders, R. and Van Deventer, E. (2005) The sensitivity of children to electromagnetic fields. Pediatrics 116, e303-e313. https://doi.org/10.1542/peds.2004-2541
  19. Kovacic, P. and Edwards, C. (2010) Integrated approach to the mechanisms of thyroid toxins: electron transfer, reactive oxygen species, oxidative stress, cell signaling, receptors, and antioxidants. J. Recept. Signal Transduct. Res. 30, 133-142. https://doi.org/10.3109/10799891003702678
  20. Kula, B., Sobczak, A., Grabowska-Bochenek, R. and Piskorska, D. (1999) Effect of electromagnetic field on serum biochemical parameters in steelworkers. J. Occup. Health 41, 177-180. https://doi.org/10.1539/joh.41.177
  21. Lahijani, M. S., Tehrani, D. M. and Sabouri, E. (2009) Histopathological and ultrastructural studies on the effects of electromagnetic fields on the liver of preincubated white leghorn chicken embryo. Electromagn. Biol. Med. 28, 391-413. https://doi.org/10.3109/15368370903287689
  22. Levitt, M. H. (2008) Spin dynamics: basics of nuclear magnetic resonance. John Wiley & Sons, England.
  23. Michal, K. and Marta, W. O. (2004) Electromagnetic fields and human endocrine system. Sci. World J. 4, 23-28. https://doi.org/10.1100/tsw.2004.175
  24. Pesce, M., Patruno, A., Speranza, L. and Reale, M. (2013) Extremely low frequency electromagnetic field and wound healing: implication of cytokines as biological mediators. Eur. Cytokine Netw. 24, 1-10.
  25. Pirozzoli, M., Marino, C., Lovisolo, G., Laconi, C., Mosiello, L. and Negroni, A. (2003) Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line. Bioelectromagnetics 24, 510-516. https://doi.org/10.1002/bem.10130
  26. Reul, J., Stec, I., Soder, M. and Holsboer, F. (1993) Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology 133, 312-320. https://doi.org/10.1210/endo.133.1.8391426
  27. Richardson, N. R. and Gratton, A. (1996) Behavior-relevant changes in nucleus accumbens dopamine transmission elicited by food reinforcement: an electrochemical study in rat. J. Neurosci. 16, 8160-8169.
  28. Salamone, J., Cousins, M. and Snyder, B. (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci. Biobehav. Rev. 21, 341-359. https://doi.org/10.1016/S0149-7634(96)00017-6
  29. Santini, M. T., Rainaldi, G. and Indovina, P. L. (2009) Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int. J. Radiat. Biol. 85, 294-313. https://doi.org/10.1080/09553000902781097
  30. Szemerszky, R., Zelena, D., Barna, I. and Bardos, G. (2010) Stressrelated endocrinological and psychopathological effects of shortand long-term 50Hz electromagnetic field exposure in rats. Brain Res. Bull. 81, 92-99. https://doi.org/10.1016/j.brainresbull.2009.10.015
  31. Turro, N. J. (1991) Modern molecular photochemistry. University Science Books, USA.
  32. Wilson, B. W., Stevens, R. G. and Anderson, L. E. (1990) Extremely low frequency electromagnetic fields, Battelle Press, USA.
  33. Yamamoto, J. (1998) Relationship between hippocampal theta-wave frequency and emotional behaviors in rabbits produced with stresses or psychotropic drugs. Jpn. J. Pharmacol. 76, 125-127. https://doi.org/10.1254/jjp.76.125
  34. Zhang, X. R., Kobayashi, H., Hayakawa, A. and Ishigaki, T. (1995) An evaluation of the biological effects of three different modes of magnetic fields on cultured mammalian cells. J. Med. Sci. 58, 157-164.

Cited by

  1. Statistical Evaluations of Variations in Dairy Cows’ Milk Yields as a Precursor of Earthquakes vol.7, pp.3, 2017, https://doi.org/10.3390/ani7030019
  2. Common behaviors alterations after extremely low-frequency electromagnetic field exposure in rat animal model 2015, https://doi.org/10.3109/15368378.2015.1054401
  3. Reactive oxygen species and male reproductive hormones vol.16, pp.1, 2018, https://doi.org/10.1186/s12958-018-0406-2
  4. Dynamics of Metabolic Parameters in Rats during Repeated Exposure to Modulated Low-Intensity UHF Radiation vol.165, pp.4, 2018, https://doi.org/10.1007/s10517-018-4184-9
  5. Aluminium foil dampened the adverse effect of 2100 MHz mobile phone–induced radiation on the blood parameters and myocardium in rats pp.1614-7499, 2019, https://doi.org/10.1007/s11356-019-04601-8
  6. Transient Inactivation of Shell Part of Nucleus Accumbens Inhibits and Exacerbates Stress-Induced Metabolic Alterations in Wistar Rats vol.8, pp.2, 2014, https://doi.org/10.18869/nirp.bcn.8.2.121
  7. ДИНАМИКА ПОВЕДЕНЧЕСКОЙ АКТИВНОСТИ И ПОКАЗАТЕЛЕЙ МЕТАБОЛИЗМА У КРЫС ПРИ МНОГОКРАТНОМ ВОЗДЕЙСТВИИ ЭЛЕКТРОМА vol.104, pp.10, 2014, https://doi.org/10.7868/s086981391810009x
  8. Role of designed Bio-Geometrical forms in antagonizing neurobehavioral burden of Wi-Fi radiation: Evidence-based experimental study vol.12, pp.3, 2014, https://doi.org/10.13005/bpj/1751
  9. Comparison of polymerization and structural behavior of microtubules in rat brain and sperm affected by the extremely low-frequency electromagnetic field vol.20, pp.1, 2014, https://doi.org/10.1186/s12860-019-0224-1
  10. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia vol.16, pp.7, 2014, https://doi.org/10.4103/1673-5374.301020
  11. Extremely Low-Frequency Magnetic Field as a Stress Factor-Really Detrimental?-Insight into Literature from the Last Decade vol.11, pp.2, 2021, https://doi.org/10.3390/brainsci11020174
  12. Effect of extremely low frequency magnetic fields on oxidative balance in rat brains subjected to an experimental model of chronic unpredictable mild stress vol.22, pp.1, 2014, https://doi.org/10.1186/s12868-021-00656-x
  13. Establishment of injury models in studies of biological effects induced by microwave radiation vol.8, pp.1, 2014, https://doi.org/10.1186/s40779-021-00303-w