• 제목/요약/키워드: EL Nino

검색결과 106건 처리시간 0.03초

Frequency analysis of nonidentically distributed large-scale hydrometeorological extremes for South Korea

  • Lee, Taesam;Jeong, Changsam;Park, Taewoong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.537-537
    • /
    • 2015
  • In recent decades, the independence and identical distribution (iid) assumption for extreme events has been shown to be invalid in many cases because long-term climate variability resulting from phenomena such as the Pacific decadal variability and El Nino-Southern Oscillation may induce varying meteorological systems such as persistent wet years and dry years. Therefore, in the current study we propose a new parameter estimation method for probability distribution models to more accurately predict the magnitude of future extreme events when the iid assumption of probability distributions for large-scale climate variability is not adequate. The proposed parameter estimation is based on a metaheuristic approach and is derived from the objective function of the rth power probability-weighted sum of observations in increasing order. The combination of two distributions, gamma and generalized extreme value (GEV), was fitted to the GEV distribution in a simulation study. In addition, a case study examining the annual hourly maximum precipitation of all stations in South Korea was performed to evaluate the performance of the proposed approach. The results of the simulation study and case study indicate that the proposed metaheuristic parameter estimation method is an effective alternative for accurately selecting the rth power when the iid assumption of extreme hydrometeorological events is not valid for large-scale climate variability. The maximum likelihood estimate is more accurate with a low mixing probability, and the probability-weighted moment method is a moderately effective option.

  • PDF

Hydro-meteorological analysis of January 2021 flood event in South Kalimantan Indonesia using atmospheric-hydrologic model

  • Chrysanti, Asrini;Son, Sangyoung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.147-147
    • /
    • 2022
  • In January 2021 heavy flood affected South Kalimantan with causing many casualties. The heavy rainfall is predicted to be generated due to the ENSO (El Nino-Southern Oscillation). The weak La-Nina mode appeared to generate more convective cloud above the warmed ocean and result in extreme rainfall with high anomaly compared to past historical rainfall event. Subsequently, the antecedent soil moisture distribution showed to have an important role in generating the flood response. Saturated flow and infiltration excess mainly contributed to the runoff generation due to the high moisture capacity. The hydro-meteorological processes in this event were deeply analyzed using the coupled atmospheric model of Weather Research and Forecasting (WRF) and the hydrological model extension (WRF-Hydro). The sensitivity analysis of the flood response to the SST anomaly and the soil moisture capacity also compared. Result showed that although SST and soil moisture are the main contributors, soil moisture have more significant contribution to the runoff generation despite of anomaly rainfall occurred. Model performance was validated using the Global Precipitation Measurement (GPM) and Soil Moisture Operational Products System (SMOPS) and performed reasonably well. The model was able to capture the hydro-meteorological process of atmosphere and hydrological feedbacks in the extreme weather event.

  • PDF

최근 동아시아 여름몬순과 북서태평양 여름몬순의 관계 변화 (Recent Changes in Relationship between East Asian and WNP Summer Monsoons)

  • 신지윤;이강진;권민호
    • 대기
    • /
    • 제34권3호
    • /
    • pp.319-323
    • /
    • 2024
  • It has been recognized that interannual relationship between Northeast Asian and western North Pacific (WNP) summer monsoon intensities has a negative correlation with a statistical significance. This teleconnection can be understood by the responses to the stationary Rossby wave, which is forced by variability of the western North Pacific summer monsoon intensity. In addition, the relationship between two monsoon intensities have a large variability on decadal time-scale associated with adjacent climate variability. The study for the recent changes in these long-term relationships has not been reported so far. This study suggests the recent relationship between Northeast Asian and WNP summer monsoons with an extension of the analysis period in the previous studies. Based on the reanalysis datasets, this study also shows atmospheric teleconnection changes associated with El Nino in summertime during the different decadal periods. This study also suggests the possible reasons for the analysis results in terms of teleconnection changes.

태평양-인도양 해양순환 연구 프로그램 (TIPEX (Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment) Program)

  • 전동철;김응;신창웅;김철호;국종성;이재학;이윤호;김석현
    • Ocean and Polar Research
    • /
    • 제35권3호
    • /
    • pp.259-272
    • /
    • 2013
  • One of the factors influencing the climate around Korea is the oceanic-atmospheric variability in the tropical region between the eastern Indian and the western Pacific Oceans. Lack of knowledge about the air-sea interaction in the tropical Indo-Pacific region continues to make it problematic forecasting the ocean climate in the East Asia. The 'Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment (TIPEX)' is a program for monitoring the ocean circulation variability between Pacific and Indian Oceans and for improving the accuracy of future climate forecasting. The main goal of the TIPEX program is to quantify the climate and ocean circulation change between the Indian and the Pacific Oceans. The contents of the program are 1) to observe the mixing process of different water masses and water transport in the eastern Indian and the western Pacific, 2) to understand the large-scale oceanic-climatic variation including El Nino-Southern Oscillation (ENSO)/Warm Pool/Pacific Decadal Oscillation (PDO)/Indian Ocean Dipole (IOD), and 3) to monitor the biogeochemical processes, material flux, and biological changes due to the climate change. In order to effectively carry out the monitoring program, close international cooperation and the proper co-work sharing of tasks between China, Japan, Indonesia, and India as well as USA is required.

위성자료(NOAA, Topex/Poseidon)를 이용한 한반도 주변해역의 기후적 특성 (On Climatic Characteristics in the East Asian Seas by satellite data(NOAA, Topex/Poseidon))

  • 윤홍주
    • 한국환경과학회지
    • /
    • 제10권6호
    • /
    • pp.423-429
    • /
    • 2001
  • Satellite data, with sea surface temperature(557) by NOAA and sea level(SL) by Topex/poseidon, are used to estimate characteristics on the variations and correlations of 557 and SL in the East Asian Seas from January 1993 through May 1998. We found that there are two climatic characteristics in the East Asian seas the oceanic climate, the eastern sea of Japan, and the continental climate, the eastern sea of China, respectively. In the oceanic climate, the variations of SL have the high values in the main current of Kuroshio and the variations of 557 have not the remarkable seasonal variations because of the continuos compensation of warm current by Kuroshio. In the continental climate, SL has high variations in the estuaries(the Yellow River, the Yangtze River) with the mixing the fresh water and the saline water in the coasts of continent and 557 has highly the seasonal variations due to the climatic effect of continents. In the steric variations of summer, the eastern sea of Japan, the East China Sea and the western sod of Korea is increased the sea level about 10~20cm. But the Bohai bay in China have relatively the high values about 20~30cm due to the continental climate. generally the trends of SST and SL increased during all periods. That is say, the slopes of 557 and SL Is presented 0.29$^{\circ}C$/year and 0.84cm/year, respectively. The annual and semi-annual amplitudes have a remarkable variations in the western sea of Korea and the eastern sea of Japan. In the case of the annual peaks, there appeared mainly In the western sea of Korea and the eastern sea of .Japan because of the remarkable variations of SL associated with Kuroshio. But in the case of the semi-annual peaks, there appeared in the eastern sea of Japan by the influence of current, and in the western sea of Korea by the influence of seasonal temperature, respectively. From our results, it should be believed that 557 and SL gradually Increase in the East Asian seas concerning to the global warming. So that, it should be requested In the international co-operation against In the change of the abnormal climate.

  • PDF

2009년 태풍 특징 (Characteristics of Tropical Cyclones Over the Western North Pacific in 2009)

  • 차은정;권혁조;김세진
    • 대기
    • /
    • 제20권4호
    • /
    • pp.451-466
    • /
    • 2010
  • This edition has continued since 2006 tropical cyclone season our effort to provide standard tropical cyclone summaries by the western North Pacific basin and detailed reviews of operationally or meteorologically significant tropical cyclones to document significant challenges and shortfalls in the tropical cyclone warning system to serve as a focal point for research and development efforts. The tropical cyclone season of 2009 in the western North Pacific basin is summarized and the main characteristics of general atmospheric circulation are described. Also, the official track and intensity forecasts of these cyclones are verified. The total number is less than 59-year (1951~2009) average frequency of 26.4. The 2009 western North Pacific season was an inactive one, in which 22 tropical storms generated. Of these, 13 TCs reached typhoon (TY) intensity, while the rest 9 TCs only reached severe tropical storm (STS) and tropical storm (TS) intensity - three STS and six TS storms. On average of 22 TCs in 2009, the Korea Meteorological Administration official track forecast error for 48 hours was 219 km. There was a big challenge for individual cyclones such as 0902 CHAN-HOM, 0909 ETAU, and 0920 LUPIT resulting in significant forecast error, with both intricate tracks and irregular moving speed. There was no tropical cyclone causing significant direct impact to the country. The tropical cyclone season in 2009 began in May with the formation of KUJIRA (0901). In September and October, ten TSs formed in the western North Pacific in response to enhanced convective activity. On the other hand, the TC activity was very weak from June to July. It is found that the unusual anti-cyclonic circulation in the lower level and weak convection near the Philippines are dominant during summertime. The convection and atmospheric circulation in the western North Pacific contributed unfavorable condition for TC activity in the 2009 summertime. Year 2009 has continued the below normal condition since mid 1990s which is apparent in the decadal variability in TC activity.

북동태평양 KOMO 정점에서 수온약층에 따른 무기영양염 분포 특성(1995-2002) (Inorganic Nutrient Distributions in Association with Thermocline at KOMO Station in the Northeast Equatorial Pacific Ocean during 1995-2002)

  • 손승규;손주원;김경홍;강정훈;지상범;유찬민;박정기;김웅서
    • Ocean and Polar Research
    • /
    • 제26권2호
    • /
    • pp.377-384
    • /
    • 2004
  • Annual variations of inorganic nutrients such as nitrate(+nitrite), phosphate and silicate in association with thermocline were investigated in the upper 200 m of the water column at KODES Long-term Monitoring (KOMO) station in the northeast equatorial Pacific from 1995 to 2002. Global climatic disturbances such as El Nino and La Nina, should have affected KODES area during the study period. In 1995-97 and 2000-2002, a thermocline where temperatures rapidly decrease with depth, was formed at 50-70 m water depth. Nutrient depletion, specially for nitrate and phosphate, was extended down to approximately 50 m depth, which coincided with the surface mixed layer depth. In 1998 and 1999, however a very fluctuating thermocline was observed at 20-100 m water depth. In the photic zone (up to 100 m depth), depth integration of nitrate, phosphate and silicate ranged from 2.02 to $23.14\;gN/m^2$, from 0.87 to $4.05\;gP/m^2$ and from 35.67 to $176.21\;gSi/m^2$, respectively. As a result of changes in the water column structures, nutrient concentrations also showed fluctuation parallel to the changes of thermocline in the study area.

대기 대순환 모헝과 해수면 온도 관측 자료를 이용한 태풍 활동의 계절 예측 가능성 (Seasonal Predictability of Typhoon Activity Using an Atmospheric General Circulation Model and Observed Sea Surface Temperature Data)

  • 한지영;백종진
    • 한국지구과학회지
    • /
    • 제27권6호
    • /
    • pp.653-658
    • /
    • 2006
  • 대기 대순환 모형인 GCPS를 이용하여 북서태평양에서의 태풍 활동의 계절 예측 가능성을 조사하였다. 1979년부터 2003년까지 각 해에 대해 해수면 온도 관측 자료를 사용하여 5개월간 초기 조건을 달리한 10개의 앙상블 멤버를 적분하였다. 모형은 발생 빈도의 평균적인 월변화 경향과 발생 분포를 관측과 유사하게 모의하였으나, 발생 빈도의 경년 변화는 신빙성 있게 예측하지 못하였다. 이는 관측과 모형간 태풍 발생 빈도와 ENSO의 상관성 차이에 인한 것으로 실제 태풍 발생 빈도와 ENSO가 뚜렷한 상관 관계를 갖지 않는 것과 달리, 모형에서는 엘니뇨 시기에 평년에 비해 많은 태풍이 발생하고 라니냐 시기에 평년에 비해 적은 태풍이 발생하는 경향을 보였기 때문이다. 반면에, 관측과 모형 모두 ENSO와의 상관 관계가 높게 나타난 태풍 발생 경도의 경우에는 모형이 발생 경도의 경년 변화를 관측과 유사하게 모의하였다.

TOMS 오존전량의 시공간 변동; 전구적인 추세 및 연직 분포 (Temporal and Spatial Variability of the TOMS Total Ozone; Global Trends and Profiles)

  • 유정문;정은주
    • 한국지구과학회지
    • /
    • 제26권3호
    • /
    • pp.199-217
    • /
    • 2005
  • TOMS 월별 오존전량의 전구 자료를 이용하여, 두 기간(전기: 1979-1992년, 후기: 1997-2002년)에 대한 오존전량 추세 및 시공간 변동을 지역과 해륙 분포에 따라 상호 비교하였다. 전기에 비하여 후기의 오존전량이 0-20 N 일부 지역을 제외하고 전지구적으로 10 DU 정도 감소하였다. 오존전량의 추세는 전구적으로 전자기간에 감소(-6.30 DU/decade)를 나타냈다. 후자 기간의 오존 증가 경향은 열대 지역에서 현저하였다. 1997-2002년 기간의 오존전량에 대한 경험직교함수 분석은 준2년 진동(QBO), 준3년 진동(QTO), 엘니뇨(ENSO), 그리고 화산폭발과 관련된 시공간 변동을 반영하였다. 열대 지역에서 대류권 오존의 연직 분포는 동서방향에서 파수 1의 형태를 보였다. 본 연구는 기후 및 환경변화와 관련된 성층권과 대류권 오존 변화의 원인 규명에 도움을 줄 수 있다.

비선형 저차 기후모델 개발과 모의된 ENSO 특징 (Development of Nonlinear Low-Order Climate Model and Simulated ENSO Characteristics)

  • 위지은;문병권
    • 한국지구과학회지
    • /
    • 제36권7호
    • /
    • pp.611-616
    • /
    • 2015
  • 엘니뇨와 남방진동(엔소)은 변동 주기가 2-8년으로 넓게 걸쳐있으며 그 진폭과 주기 또한 천천히 변하는데 이런 특징을 각각 엔소 불규칙성과 엔소 변조라 한다. 이 연구는 비선형 대기 변동성을 나타나는 Lorenz-63 모형과 간단한 충전 진동자 모형을 결합함으로써 비선형 저차 기후모델을 개발하였다. 이 모델은 동태평양의 해수면 온도 변동의 중심주기, 넓은 주기성, 강도의 수십 년 변동 등과 같은 관측에서 보이는 엔소 특징을 잘 재현하였다. 이것은 대기 카오스 강제력이 엔소의 불규칙성과 변조를 이끌 수 있음을 보여준다. 덧붙여 모델은 서태평양 온난역의 대류활동이 강해지면 라니냐 발생 가능성이 높아지는 것을 제시하였다. 이 모델은 간단하면서도 적도 태평양의 대기-해양 비선형 상호작용을 잘 모사하고 있기에 향후 장기 기후변화 연구에 활동될 것으로 기대된다.