• Title/Summary/Keyword: EI/MS

Search Result 118, Processing Time 0.035 seconds

Anti-apoptotic Effects of Terrein on Etoposide-induced Apoptosis of U937 Human Leukemia Cells (Terrein의 etoposide에 의해 유도된 apoptosis 저해효과)

  • 이충환;이호재;김진희;김현아;고영희
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.2
    • /
    • pp.87-91
    • /
    • 2000
  • In the course of screening for the substances inhibiting apoptosis ofU937 human leukemia cell induced by etoposide, a fungal strain F80834 producing a high level of inhibitor was selected. The inhibitory substance was purified and identified as terrein by spectroscopic methods of UV, EI-MS, IH-NMR, 13C-NMR and DEPT. Terrein showed inhibitory activity of caspase 3, a major protease of apoptosis cascade, with an $IC_{50}$ value of $20\mu\textrm{g}/ml$ after 7 hrs of treatment. It also showed protective effect against cell death with an $IC_{50}$ value of $10\mu\textrm{g}/ml$ on U937 cells induced by etoposide after 24 hrs of treatment, but did not show any cytotoxicity at the same condition without etoposide.

  • PDF

Analytical Method of Epichlorohydrin in Canned Beverages by Purge-and- Trap/GC

  • Lee Kwang-Ho;Kwak In-Shin;Kim Dyoung-Il;Choi Byoung-Hee;Kim Guy-Joung;Lee Chul-Won
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2001.10a
    • /
    • pp.140-140
    • /
    • 2001
  • A sensitive analytical method based on gas chromatograpy-mass spectrometry with a selected ion monitoring (GC/MS-SIM) with the purge-and-trap concentration and with headspace method (in limited applications) was developed for determining of epichlorohydrin in canned beverages coated with epoxy resin. The calibration curve in the range of $0.5\sim50ng$ had correlation coefficient greater than 0.998 and a detection limit of $0.l\mug/L$ was obtained using a sample volume of 20ml. The predominant ions of epichlorohydrin produced in MSD using electron ionization(EI) were m/z 57 ([M-CI]+) and 62/64 $([M-CH_2O]+)$. In survey of epichlorohydrin in thirty commercial canned beverage samples, none of them was detected.

  • PDF

Isolation and Characterization of Antimicrobial Substance Macrolactin A Produced from Bacillus amyloliquefaciens CHO104 Isolated from Soil

  • Lee, Seung-Je;Cho, Jeong-Yong;Cho, Jung-Il;Moon, Jae-Hak;Park, Ki-Deok;Lee, Young-Ju;Park, Keun-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.525-531
    • /
    • 2004
  • A strain antagonistic to Fusarium solani, CHO104, was selected from approximately 100 microorganisms isolated from soil. Strain CHO104 was identified as Bacillus amyloliquefaciens and found to be Gram-positive based on the Biolog system and 16S rRNA methods. A culture broth of B. amyloliquefaciens CHO104 also exhibited antimicrobial activity against various microorganisms. As such, the EtOAc extract of the culture broth was isolated by various column chromatographic procedures and HPLC. The antimicrobial and antifungal substance was then characterized as macrolactin A $(C_{24}H_{34}O_5)$ using high-resolution EI-MS and NMR analyses, and found to be very effective in inhibiting the growth of Staphylococcus aureus, E. coli, and Botrytis cinerea, even when using a concentration of one-twentieth of the benzoic acid as the control compound.

향신료의 활성산소 포촉인자

  • 정신교
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 1993.12a
    • /
    • pp.10-11
    • /
    • 1993
  • 기저상태의 산소분자는 비교적 안정하지만 생체ㅇ내외에서 물리적, 화학적으로 활성화 되어 $O_{2}$, $^{1}O_{2}$, OH, $H_{2}O_{2}$ 등의 활성산소종을 생성하며, 생체의 지질, 단백질, 핵산 당등의 분자에 산화적 상해를 초래하여 노화, 암, 순환기, 호흡기 게통의 질환과 식품의 품질열화에 관여하는 것으로 알려져 있다. 따라서 본인은 식품의 맛, 향기, 색 등을 부여하는 고유의 기능 외에도 방부제, 한방약으로 널리 이용되고 오고 있는 51종의 향신료를 대상으로 활성산소포촉활성을 조사하고 나아가 활성물질을 분리, 정제 및 동정함으로 향신료의 새로운 기능을 밝히고 신약 개발의 기초적 자료를 제시하고저 한다. Fenton 반응을 이용하여 2-deozyribose 산화법과 sodium benzoic acid 수산화법으로 51종의 향신료의 OH 포촉활성을 검색한 결과, Cruciferae과의 nustard 류, Labiatae과의 thyme, saga, savory, oregano, Myrtaceae과의 clove, allspice 가 1ug/ml 농도에서 50%이상의 포촉활성을 나타내었으며 그중 mustard 류는 같은 농도에서 거의 90%이상의 활성을 나타내었다. 활성물질의 분리 및 정제는 Amberlite XAD-2 갈럼과 preparative-HPLC를 이용 하였으며, EI, FAB-MS, IR, $^{1}H$, $^{13}C-NMR$, Cosy-NMR로 그 화학적 구조를 동정하였다. Brown mustard에서 동정된 4-hydroxy-3,5-dimethoxy cinnamic acid Methyl ester는 0.42$\mu$ mol 농도에서 90% 이상의 OH 포촉활성을 나타내어 이를 diazomethane 반응으로 조제하였으며 white mistard에서는 4-hydroxy-3,5-dimethoxy cinnamoyl choline을 동정하였다.

  • PDF

Isolation and structure elucidation of antifungal compounds from the antarctic lichens, Stereocaulon alpinum and Sphaerophorus globosus

  • Kim, Young-Shin;Lim, Chi-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.183-191
    • /
    • 2020
  • Lichens are composite organisms consisting of a symbiotic association of a fungus with a photosynthetic partner (the photobiont or phycobiont), usually either a green alga or cyanobacterium. According to more recent studies, the biological activities of lichens and lichen substances include an antibiotic activity, antitumor and antimutagenic activity against human immunodeficiency virus (HIV), allergenic activity, plant growth inhibitory activity, and enzyme inhibitory activity. This study screened lichen extracts with a potent in vitro antifungal activity against plant diseases caused by phytopathogenic fungi. The compounds were isolated from Stereocaulon alpinum and Sphaerophorus globosus, and their chemical structures were identified as methyl hematommate, methyl β-orsellinate, 5-hydroxyferulic acid, sphaerophorin, and 2-heptyl-4,6-dimethoxybenzoic acid by electron ionization mass spectrometry (EI-MS) and nuclear magnetic resonance (NMR) spectral analyses. In vitro disease control against Alternaria mali, Cochliobolus miyabeanus, Colletotrium gloeosporioides, and Verticillum dahliae was evaluated. And among the five compounds, only methyl hematommate was effective against A. mali, C. miyabeanus, and C. gloeosporioides. The compounds were isolated from these lichens, which have a similar biosynthetic pathway, respectively. This is the first report of these compounds being isolated from these lichens.

DNA Toposiomerase I Inhibitor by Streptomyces sp. 7489 (방선균주 7489가 생산하는 DNA Topoisomerase I 저해제에 관한 연구)

  • Lee, Dong-Sun;Ha, Sang-Chul;Lee, Sang-Yong;Kim, Jong-Guk;Hong, Soon-Duck
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.101-104
    • /
    • 1996
  • During the screening of inhibitor of DNA topoisomerase I from microbial secondary metabolites, Streptomyces melanosporofaciens 7489 which was capable of producing high level of inhibitor was selected from soil. The active compound (7489-1) was purified from the culture broth by solvent extraction, silica gel column chromatography and HPLC. The inhibitor was identified as dibutyl phthalate by spectroscopic methods of UV, $^{1}H$-NMR, $^{13}C$-NMR, DEPT and EI-MS. 7489-1 showed a strong inhibitory activity against topoisomerase I with 10 ${\mu}$M of $IC_{50}$ value.

  • PDF

Antibacterial Activity of Oleanolic Acid from Physalis angulata against Oral Pathogens

  • Hwang, Jae-Kwan;Shim, Jae-Seok;Park, Kyung-Min;Chung, Jae-Youn
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.2
    • /
    • pp.215-218
    • /
    • 2002
  • A methanol extract of Physalis angulata exhibited in vitro antibarterial activity against oral pathogens such including Streptococcus mutans and Porphyromonas gingivalis. The methanol extract of Physalis angulata was further fractionated with ethyl acetate, n-butanol and water, in which the ethyl acetate fraction exclusively showed antibacterial activity. An active antibacterial compound from the ethyl acetate fraction was purified to a single compound using silica gel column chromatography and identified as oleanolic acid by $^{13}$ C-NMR, $^1$H-NMR and EI-MS. MIC of oleanolic acid against S. mutants and p. gingivalis were determined to be 50 and 25 ug/mL, respectively. The Antibacterial activity of oleanolic acid from Physalis angulata suggested that it has potential as an anticarcinogenic and antiperiodontic ingredients in various foods and oral care products.

C-Ring Cleavage of Isoflavones Daidzein and Genistein by a Newly-Isolated Human Intestinal Bacterium Eubacterium ramulus Julong 601

  • Wang, Xiu-Ling;Kim, Ki-Tae;Lee, Je-Hyeon;Hur, Hor-Gil;Kim, Su-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.766-771
    • /
    • 2004
  • Julong 601, a Gram-positive anaerobic bacterium strain capable of cleaving the C-ring of isoflavones daidzein and genistein, was isolated from human feces. BLAST search revealed that its complete 16S rDNA gene sequence has 99% similarity to Eubacterium ramulus. Metabolites of daidzein and genistein were determined as O-desmethylangolensin (O-Dma) and 2-(4-hydroxyphenyl) propionic acid (2-HPPA), respectively, based on UV, EI-MS, and $^1H$ and ^{13}C$ NMR spectral analyses. Enantiomers of O-Dma and 2-HPPA were isolated by chiral stationary-phase HPLC (CSP HPLC). Cleavage of the C-ring of daidzein and genistein by strain Julong 601 was highly enantioselective. Specific rotation ([$\alpha]_D$) and circular dichroism (CD) spectra of the enantiomers are reported here for the first time. Biotransformation kinetics of daidzein and genistein indicated that the C-ring of genistein has a higher susceptibility to bacterial degradation than that of daidzein.

Antagonism and Structural Identification of Antifungal Compound from Chaetomium cochliodes against Phytopathogenic Fungi

  • Kang, Jae Gon;Kim, Keun Ki;Kang, Kyu Young
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.146-150
    • /
    • 1999
  • As a part of the integrated disease system in greenhouse, an antifungal fungus(AF1) was isolated from greenhouse soil. It exhibited strong inhibitory activites against Pythium ultimum, Phytophtora capsici, Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum based on dual culture on 1/5 strength of potato dextrose agar between antagonistic fungus and several plant pathogens. The antagonistic fungus was identified as Chaetomium cochliodes, based on morphological characteristics; the body of the perithecium bears straight or slightly wavy, unbranched hairs, whilst the apex bears a group of spirally coiled hairs. To investigate antagonistic principles, antifungal compound was extracted and fractionated by different solvent systems. An antifungal compound was isolated as pure crystal from is culture filtrate using organic solvent extraction and column chromatography, followed by preparative thin layer chromatography. The chemical structure of the purified antifungal compound was identified as chaetoglobosin A based on the data obtained form $^1H-NMR$, $^{13}C-NMR$, DEPT 90, 135, $^1H-^1H$ COSY, $^1H-^{13}C$ COSY and EI/MS. $ED_{50}$ values of the chaetoglobosin A against P. ultimum, P. capsici, R. solani, B. cinerea and F. oxysporum were 1.98, 4.01, 4.16, 2.67 and 35.14 ppm, respectively.

  • PDF

Isolation and identification of antifungal compounds from Reynoutria elliptica (호장근(Reynoutria elliptica)으로부터 항균활성 물질의 분리 및 구조결정)

  • Hwang, Joo-Tae;Park, Young-Sik;Kim, Young-Shin;Kim, Jin-Cheol;Lim, Chi-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.4
    • /
    • pp.583-589
    • /
    • 2012
  • In the continued research on natural fungicides for the control of plant diseases by using plant-derived products, we found that Reynoutria elliptica. had a strong fungicidal activity against several plant pathogens. R. elliptica (3.2 kg) were extracted with 80% aq. MeOH and the concentrated extracted was partitioned with n-hexane, EtOAc, n-BuOH and $H_2O$ successively. The four layers were tested their disease control efficacies against 4 plant disease such as rise blast (RCB), tomato grey mold (TGM), tomato late blight (TLB), and barly powdery mildew (BPM). The n-hexane fraction was highly active showing over 95% control against TLB and BPM. and the EtOAc fraction was highly active showing over 95% control against RCB, TLB, and BPM. By using silica gel chromatography, MPLC, and HPLC, three compounds that were expected to have antifungal activity were isolated. Their chemical structures were elucidated as physcion, emodin, and emodie-8-O-glucoside by EI-MS and NMR spectroscopic analyses.