• Title/Summary/Keyword: EGS4

Search Result 54, Processing Time 0.023 seconds

Development of the EGS4 Control Code to Calculate the Dose Distributions in a Strong Magnetic Field (자기장이 인가된 물팬텀 속의 전자선 선량분포 계산을 위한 EGS4 제어코드의 개발과 응용)

  • 정동혁;오영기;신교철;김진기;김기환;김정기;이강규;문성록;김성규
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • In this work we developed a EGS4 control code to calculate the dose distributions for high energy electron beams in water phantom applied longitudinal magnetic field. We reviewed the electron's motion in magnetic field and delivered equations for direction changs of the electron by the external magnetic field. The mathematical results are inserted into the EGS4 code system to account for the presence of external magnetic fields in phantom. The electron pencil beam paths of 6 MeV in water phantom are calculated for magnetic fields of 1-3 T and the dose distributions for a field of 1.0 cm in diameter are calculated for magnetic fields of 0.6-1 T using the code. From the results of path calculations we found that the lateral ranges of the electrons are reduced in the magnetic field of 3 T. For a field of 1 cm diameter and a magnetic field of 1 T, the small dose enhancement near the range of the electrons on the depth dose and the penumbra reduction of 0.15 cm on the beam profile are observed. We discussed and evaluated the results from the theoretical concepts.

  • PDF

Study on EGS5 Based Test Code and Preliminary Results (EGS5 기반 사용자코드의 작성과 초기 계산결과)

  • Jeong Dong-Hyeok;Kim Jhin-Kee;Shin Kyo-Chul;Kim Ki-Hwan;Kim Jeung-Kee;Oh Young-Kee;Ji Young-Hun
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.123-129
    • /
    • 2006
  • A test code was written to apply the EGS5 Monte Carlo code recently published to radiotherapy. This test code was designed to calculate the depth dose in cylindrical phantom for point source model. The evaluation of the test code was peformed by calculating the depth dose curves for high energy electrons of 5, 9, 12, and 15 MeV photons of Co-60 and 10 MV in water and comparing the results with DOSRZ/EGS4 results. In depth dose results, the differences between test code and DOSRZ/EGS4 were estimated to be less then ${\pm}1.5%\;and\;{\pm}3.0%$ approximately for electron and photon beams respectively.

  • PDF

EGS4 코드를 이용한 물질 내에서 Photoneutron 생성률과 에너지분포 계산

  • 신창호;서보균;김종경;김귀년;장종화
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.199-204
    • /
    • 1998
  • 고에너지 전자가 매질 내에서 수송될 때, 매질 내에서 Photoneutron 생성률과 생성된 중성자 에너지 분포를 EGS4 코드를 사용하여 계산하였다. EGS4 코드는 광자-전자 연계 수송코드로 Photoneutron 반응단면적을 제공하지 않기 때문에, Photoneutron 반응단면적 계산루틴과 생성된 중성자 에너지분포 계산루틴을 작성하여 Ta와 Pb의 표적 매질에 100 MeV의 전자가 입사하였을 때 표적의 두께변화에 따른 Photoneutron 생성률과 생성된 중성자 에너지분포를 계산하였다.

  • PDF

Molecular Cloning of cDNA Encoding a Putative Eugenol Synthase in Tomato (Solanum lycopersicum 'Micro-Tom') and Prediction of 3D Structure and Physiochemical Properties (토마토 'Micro-Tom' 과실의 eugenol synthase 유전자 클로닝, 단백질의 3차 구조 및 생리화학적 특성 예측)

  • Kang, Seung-Won;Seo, Sang-Gyu;Lee, Tai-Ho;Lee, Gung-Pyo
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.9-20
    • /
    • 2012
  • Eugenol is a volatile compound synthesized by eugenol synthase in various plants and belongs to phenylpropene compounds. However, characteristics of eugenol synthase in tomato has not been known. Therefore, we cloned a full length cDNA of a putative eugenol synthase from tomato 'Micro-Tom' using rapid amplification of cDNA ends (RACE) technique and named a clone SlEGS. Open reading frame of SlEGS was 921bp long and its deduced amino acid sequence was 307bp. The BLAST analysis indicated that SlEGS shared high similarity with PhEGS1 (67.1%) and CbEGS2 (69.4%). Amino acid composition of SlEGS was determined by CLC genomics workbench tool and 3D structure of SlEGS was constructed by homology modeling using Swiss-PDB viewer and validated using PROCHECK and ProSA-web tool. In addition, the physiochemical properties of SlEGS was evaluated using ExPASy's ProtParam tool. Molecular weight was 33.93kDa and isoelectric point was 5.85 showing acidic nature. Other properties such as extinction coefficient, instability index, aliphatic index, and grand average hydropathy was also analyzed.

A Study on the Comparison of HPGe Detector Response Data for Low Energy Photons Using MCNP, EGS, and ITS Codes (MCNP, EGS, ITS코드를 이용한 고순도 게르마늄 검출기의 저에너지 광자에 대한 반응 비교연구)

  • Kim, Soon-Young;Kim, Jong-Kyung;Kim, Jong-Oh;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.2
    • /
    • pp.125-129
    • /
    • 1996
  • The energy response of HPGe detector for low energy Photons was determined by using three Monte Carlo codes. MCNP4A. EGS4, and CYLTRAN in ITS3. In this study. bare HPGe detector$(100 mm^2{\times}10mm)$ was used and a pencil beam was incident perpendicularly on the center of the detector surface. The photopeak efficiency, $K_{\alpha}$ and $K_{\beta}$ escape fractions were calculated as a function of incident X-ray energies ranging from 12 to 60 keV in 2-keV increments. Since the Compton. elastic. ana penetration fraction were negligible in this energy range. they were ignored in the calculation. Although MCNP. EGS, and CYLTRAN codes calculated slightly different energy response of HPGe detector for low energy Photons, it appears that the three Monte Carlo codes can Predict the low energy Photon scattering Processes accurately. The MCNP results, which are generally known as to be less accurate at low energy ranges than the EGS and ITS results. are comparable to the results of EGS and ITS and are applicable to the calculation of the low energy response data of a detector.

  • PDF

Case Study on Groß Schönebeck EGS Project Research in Germany (독일 그로스 쉐네벡 EGS 실증 프로젝트 연구사례)

  • Min, Ki-Bok;Park, Sehyeok;Zimmermann, Gunter
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.320-331
    • /
    • 2015
  • This paper presents a case study of an enhanced geothermal system(EGS) demonstration project conducted in $Gro{\ss}$ $Sch{\ddot{o}}nebeck$, Northerm Germany, focusing on hydraulic stimulation. The project was conducted with doublet system in sandstone and volcanic formations at 4 - 4.4 km depth. Under normal faulting to strike-slip faulting stress regime, hydraulic stimulations were conducted at injection and production wells by massive waterfrac and gel-proppant fracturing. Injectivity index increased from $0.97m^3/(hr^*MPa)$ to $7.5m^3/(hr^*MPa)$ and productivity index increased from $2.4m^3/(hr^*MPa)$ to $10.1m^3/(hr^*MPa)$ by a series of hydraulic stimulations at both wells. After circulation tests through injection and production wells, however, productivity index decreased from $8.9m^3/(hr^*MPa)$ to $0.6m^3/(hr^*MPa)$ in two years. Slip tendency analysis for the stimulation in volcanic layer estimated the required pressure for shear slip and its preferred orientations and it showed reasonable match with actual stimulation results. Through the microseismicity observation for the stimulation of volcanic formation, only 80 seismic events with its moment magnitudes in -1.8<$M_W$<-1.0 were observed, which are unexpectedly low for EGS hydraulic stimulation.

The Calculation of Response Matrix of 2-Dimensional Radiation Monitoring System Using EGS4 Simulation (EGS4 simulation을 이용한 2차원 방사선준위 분포측정 시스템의 Response Matrix 계산)

  • Kim, S.H.;Han, S.H.;Kang, H.D.;Kim, J.C.;Park, I.K.;Choi, Y.S.;Lee, Y.B.;Lee, J.M.
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.2
    • /
    • pp.127-133
    • /
    • 1997
  • In this study an EGS4 simulation code was used to calculate real energy spectrum from measured ${\gamma}$-ray energy spectrum obtained using 2-dimensional radiation monitoring system. As a result, the $39{\times}39$ response matrix was calculated the energy range of 0.1 to 2 MeV which energy interval of 50 keV The real energy spectrum for Co-60 radioisotope was calculated using inverse of response matrix. It was confirmed that the calculated response matrix was useful to the analysis of the measured energy spectrum for the radiation monitoring system.

  • PDF

A Study on the Spatial Resolution of Gas Detectors Based on EGS4 Calculations

  • Moon, B.S.;Han, S.H.;Kim, Y.K.;Chung, C.E.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • Results of EGS4 based calculations to study the spatial resolution of gas detectors are described. The calculations include radial distribution of electrons generated by photons of various energies penetrating into variable thickness of Ar and Xe gas layers. Given a desired spatial resolution, the maximum allowed thickness of gas layer for each energy level is determined. In order to obtain 0.1mm spatial resolution, the maximum thickness for the Ar gas is found to be 2mm for photon energies below 14keV while the optimum energy of photons for Xe gas with the same thickness is about 45keV. The results of calculations performed to compare the number of electrons generated by CsI coated micro-channel plate and the number of electrons generated by the Ar and Xe gas layers are described. The results show that the number of electrons generated by the gases is about 10 times higher than the one generated by CsI coated micro-channel plate. A few sample gray scale images generated by these calculations are included.