• Title/Summary/Keyword: EGR1

Search Result 154, Processing Time 0.027 seconds

Genetic Association Study of the Common Genetic Variation of Early Growth Response 3 Gene With Bipolar Disorder in Korean Population (Early Growth Response 3 유전자와 양극성 장애 간 유전연합 연구)

  • Jang, Moonyoung;Ahn, Yong Min;Kim, Yong Sik;Kim, Se Hyun
    • Korean Journal of Biological Psychiatry
    • /
    • v.29 no.2
    • /
    • pp.33-39
    • /
    • 2022
  • Objectives The early growth response 3 (EGR3) gene located in chromosome 8p21.3 is one of the susceptibility loci in many psychiatric disorders. EGR3 gene plays critical roles in signal transduction in the brain, which is involved in neuronal plasticity, neuronal development, learning, memory, and circadian rhythms. Recent studies have suggested EGR3 as a potential susceptibility gene for bipolar disorder (BPD). However, this requires further replication with an independent sample set. Methods To investigate the genetic role of EGR3 in Korean patients, we genotyped six single-nucleotide polymorphisms (SNPs) in the chromosome region of EGR3 in 1076 Korean BPD patients and 773 healthy control subjects. Results Among the six examined SNPs of EGR3 (rs17088531, rs1996147, rs3750192, rs35201266, rs7009708, rs1008949), SNP rs35201266, rs7009708, rs1008949 showed a significant association with BPD (p = 0.0041 for rs35201266 and BPD2, p = 0.0074 for rs1008949 and BPD, p = 0.0052 for rs1008949 and BPD1), which withstand multiple testing correction. In addition, the 'G-C-C-C' and 'G-C-G-C' haplotypes of EGR3 were overrepresented in the patients with BPD (p = 0.0055, < 0.0001, respectively) and the 'G-T-G-C' haplotype of EGR3 was underrepresented in patients with BPD (p = 0.0040). Conclusions In summary, our study supports the association of EGR3 with BPD in Korean population sample, and EGR3 could be suggested as a compelling susceptibility gene in BPD.

Isolation and Identification of Three Pseudomonas koreensis Strains with Anti-microbial Activities Producing Inducers of the Expression of Egr-1 Gene (Egr-1 유전자의 발현 유도물질을 생산하는 항균성 저 영양 세균의 분리 및 동정)

  • Yoon, Sang-Hong;Kim, Dong-Gwan;Lee, Young-Han;Shin, Soon-Young;Kwon, Soon-Woo;Lee, Chang-Muk;Kang, Han-Chul;Koo, Bon-Sung
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.119-125
    • /
    • 2011
  • The Egr-1 gene is known to be a transcription factor for activating the expression of many tumor-repressing genes. In this study, three strains activating the promoter of the Egr-1 gene were selected, through the use of Egr-1 luciferase reporter assay and western blotting, from amongst approximately 3,800 oligotrophic bacteria isolated from the cultivated soils of various regions within Korea. These strains were identified as Pseudomonas koreensis on the basis of phylogenetic tree analysis of their 16S ribosomal DNA sequences and biochemical characteristics analyses using a variety of commercial kits (API 20NE, ID 32GN, API ZYM kits). In addition, we discovered that these strains produced anti-bacterial activity against Bacillus subtilis, Staphylococcus aureus and Listeria monocytogenes.

The Effects of EGR and Hydrogen Enriched Gas on Diesel HCCI Engine (디젤 예혼합 압축착화 엔진에서 EGR 및 수소농후가스의 영향)

  • Park, Cheol-Woong;Cho, Jun-Ho;Oh, Seung-Mook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • In recent years, there has been an interest in early-injection diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to standard diesel engine. The more homogeneous mixture may result in reduced NOx and soot emissions and higher efficiency in homogeneous charge compression ignition engines. While earlier studies have shown that a reduction in NOx emissions from HCCI engine is possible, there are some significant problems including the control of ignition timing and combustion rate. In order to investigate the effect of EGR and hydrogen enriched gas on combustion characteristics and emissions, an experiments with single cylinder CRDi engine were carried out concerning the formation of various premixed charge, which can achieved by early injection, EGR and hydrogen enriched gas. EGR was not effective to further reduce NOx and PM emissions. It was found that NOx emissions were decreased with an introduction of hydrogen enriched gas and an adequate diesel fuel amount.

The Effects of Split-Injection and EGR on the Combustion Characteristics of a DISI Engine (직접분사식 가솔린 엔진에서 분할분사 및 배기가스 재순환의 효과)

  • Moon Seoksu;Choi Jaejoon;Abo-Serie Essam;Bae Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.144-152
    • /
    • 2006
  • Split injection has been known to reduce total hydrocarbon (THC) emission level and increase engine performance under certain operating conditions 1, 2). Exhaust Gas Recirculation (EGR) is a common technique adopted for nirtric oxides (NOx) reduction by the dilution of intake air, despite a sacrifice of simultaneous increase in THC and decrease in engine performance3). Thus, using split injection with adequate EGR may improve the emission level of UBHC, NOx and the engine performance compared to that of single-injection with or without EGR cases. The purpose of this study is to investigate the engine performance and emission levels at various engine operating conditions and injection methods when it is applied with EGR. The characteristics of single-injection and split-injection were investigated with various engine loads and EGR rates. The engine speed is changed from 800rpm to 1200rpm to investigate how the combustion characteristics are changing with increasing engine speed.

Model-based Gain Scheduling Strategy for Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines (승용디젤엔진의 공연비 제어 알고리즘을 위한 모델기반 게인 스케줄링 전략에 대한 연구)

  • Park, Inseok;Hong, Seungwoo;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2015
  • This study presents a model-based gain scheduling strategy for PI-based EGR controllers. The air-to-fuel ratio is used as an indirect measurement of the EGR rate. In order to cope with the nonlinearity and parameter varying characteristics of the EGR system, we proposed a static gain model of the EGR system using a new scheduling parameter. With the 810 steady-state measurements, the static gain model achieved 0.94 of R-squared value. Based on the static gain of the EGR system, the PI gains were robustly designed using quantitative feedback theory. Consequently, the gains of the PI controller are scheduled according to the static gain parameter of the EGR path in runtime. The proposed model-based gain scheduling strategy was validated through various operating conditions of engine experiments such as setpoint step responses and disturbance rejections.

Effects of EGR and Premixedness on NO Formation of Methane/Air Flames (EGR 및 예혼합 정도가 메탄/공기 화염의 NO 생성에 미치는 영향)

  • Lee, Won-Nam;Lee, Woong-Jae
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.63-74
    • /
    • 1999
  • The effects of EGR and premixedness on NO formation have been numerically investigated. The flame structure is classified into three categories; premixed flame($=1)$, rich/lean premixed flame(${\alpha}=0.6$ and 0.8) and diffusion flame(${\alpha}=0$). NO formation/destruction mechanisms are assorted to thermal, reburn and Fenimore mechanisms. The temperature of unburned gas is arranged to 298 and 500 K to have access to the condition in a real internal combustion engine. The results show that all three NO formation/destruction reaction rates in the fuel rich flame zone could be decreased by EGR for rich/lean premixed flames, while those in the fuel lean flame zone are not significantly changed. Near the stagnation plane, however, only the thermal NO reaction rate is decreased. The contribution of reburn and Fenimore mechanisms for the net NO production becomes less significant as the premixedness of a flame increases. The larger amount of NO reduction with EGR is expected under the higher temperature and/or higher fuel/air premixedness conditions due to the increased contribution of the thermal mechanism. The role of Fenimore and reburn mechanisms could be important for rich premixed and diffusion flames; therefore, the effect of EGR on NO reduction could vary with fuel/air premixedness. The premixedness of a partially premixed flame changes the flame structure and could affect the NO production characteristics.

  • PDF

Numerical Study on Strategy of Applying Low Pressure Loop EGR for a Heavy Duty Diesel Engine to Meet EURO-4 Regulation (저압라인 EGR을 적용한 대형 디젤엔진의 EURO-4 규제 대응 전략에 관한 수치적 연구)

  • Ha Changhyun;Lee Seungjae;Lee Kyoseung;Chun Kwangmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.115-122
    • /
    • 2006
  • EGR system has been widely used to reduce NOx emission in light duty diesel engines, but its application to heavy duty diesel engine is not common yet. In this study, simulation model for EURO-3 engine was developed using commercial code WAVE and then verified by comparison with experimental results in performance and emission. Possibility to meet EURO-4 regulation using modified EURO-3 engine with LPL EGR system was studied. Each components of the engine was modeled using CATIA and WaveMesher. The engine test mode was ESC 13 and injection timing and quantity were changed to compensate engine performances, because applying EGR causes power reduction. As a results of the simulation, it was found that EURO-4 NOx regulation could be achieved by applying LPL EGR system to current EURO-3 engine even with some BSFC deterioration.

The Effect of Exhaust Gas Recirculation (EGR) on Combustion Stability, Engine Performance and Exhaust Emissions In a Gasoline Engine

  • Jinyoung Cha;Junhong Kwon;Youngjin Cho;Park, Simsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1442-1450
    • /
    • 2001
  • The EGR system has been widely used to reduce nitrogen oxides (NO$\_$x/) emission, to improve fuel economy and suppress knock by using the characteristics of charge dilution. However, as the EGR rate at a given engine operating condition increases, the combustion instability increases. The combustion instability increases cyclic variations resulting in the deterioration of engine performance and emissions. Therefore, the optimum EGR rate should be carefully determined in order to obtain the better engine performance and emissions. An experimental study has been performed to investigate the effects of EGR on combustion stability, engine performance,70x and the other exhaust emissions from 1.5 liter gasoline engine. Operating conditions are selected from the test result of the high speed and high acceleration region of SFTP mode which generates more NO$\_$x/ and needs higher engine speed compared to FTP-75 (Federal Test Procedure) mode. Engine power, fuel consumption and exhaust emissions are measured with various EGR rate. Combustion stability is analyzed by examining the variation of indicated mean effective pressure (COV$\_$imep/) and the timings of maximum pressure (P$\_$max/) location using pressure sensor. Engine performance is analyzed by investigating engine power and maximum cylinder pressure and brake specific fuel consumption (BSFC)

  • PDF

Effects on Performance Characteristics of Diesel Engine by EGR system with Scrubber (Scrubber를 장착한 EGR 시스템이 디젤기관의 성능특성에 미치는 영향)

  • 임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.184-191
    • /
    • 1999
  • Th effects of exhaust gas recirculation(EGR) on the characteristics of combustion exhaust emissions and specific fuel consumption(SFC) are experimentally investigated by four-cylin-der four-cycle and direct injection marine diesel engine. In order to reduce soot contents in the recirculated exhaust gas to intake system of the engines a novel diesel soot removal system with a cylinder-type scrubber which has water injector(4 nozzles in 1.0mm diameter)is specially designed and manufactured for the experi-mental system. The obtained results are as follows; The combustion pressure in cylinder is decreased and ignition is delayed with increasing EGR rate. The accumulated quantity of heat release is slightly decreased and the tendency of heat release rate is not constant. NOx and Soot emissions are decreased by maximum 7% and 540% with scrubber tan without scrubber in the range of experimental conditions. Those are increased at the lean burn area with increasing equivalence ration in the constant value of engine speed and EGR rate. Also those are decreased with increasing EGR rate in the constant value of engine speed and equivalence ratio.

  • PDF

Factor Analysis on Exhaust Gas Emissions of Small DI Diesel Engine (직접분사식 소형 디젤엔진의 배기배출물에 대한 인자분석적 고찰)

  • JANG, Se-Ho;KIM, Yeong-Sik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.586-592
    • /
    • 2017
  • This study analyzed the effect of four control factors, RPM, load, EGR rate and cooling water temperature on the exhaust emissions of the small DI diesel engine. The amount of NOx and smoke emissions were measured through experiments for three levels of four control factors according to orthogonal array table, and the effect of four factors on NOx and smoke emissions was analyzed quantitatively. The main results obtained in this study are summarized as follows: 1. RPM, load and EGR rate have a great influence on NOx and smoke emissions, and the effect of cooling water temperature is negligible. 2. As RPM and load increases NOx emission increases and decreases sharply as the EGR rate increases. 3. Smoke emission decreases or increases randomly according to RPM and load, but increases sharply in proportion to the EGR rate. 4. EGR rate has the greatest effect on NOx and smoke emissions by more than 60% of contribution to variance, especially in the case of NOx emission, EGR rate represents a significant result even under the confidence level of 99% on ANOVA.