• 제목/요약/키워드: EGR system

검색결과 185건 처리시간 0.026초

반응 표면법을 이용한 2 단 분사 PCCI 디젤엔진의 운전조건의 영향도 평가에 대한 연구 (Effects of optimal operating conditions on 2-stage injection PCCI diesel engine using Response Surface Methodology)

  • 이재현;김형민;이기형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3044-3048
    • /
    • 2008
  • It is well known that Premixed Charge Compression Ignition (PCCI) diesel engines according to many technologies such a change in injection timing, multiple injection strategy, cooled EGR, intake charging and SCV have the potential to achieve homogeneous mixture in the cylinder which result in lower NOx and PM as well as performance improvements. This may generate merely the infinite number of experimental conditions. The use of Response Surface Methodology (RSM) technique can considerably pull down the number of experimental set and time demand. This paper presents the effects of both fuel injection and engine operation conditions on the combustion and emissions in the PCCI diesel engine system. The experimental results have revealed that a change in fuel injection timing and multiple injection strategy along with various operating conditions affect the combustion, emissions and BSFC characteristics in the PCCI engine.

  • PDF

Euro-6 대응 경유 차량의 NOx 저감율 분석 연구 (Research on the NOx Reduction Rate of Diesel Vehicle for Euro-6)

  • 강민경;권석주;서영호
    • 융복합기술연구소 논문집
    • /
    • 제7권1호
    • /
    • pp.15-18
    • /
    • 2017
  • As emission gas regulation of deisel vehicles is strengthened to Euro-6, It becomes difficult to deal with NOx regulated value mainly by EGR without additional after-treatment system. In addition, RDE(Real Driving Emissions) test will be introduced after september 2017. Therefore, It is essential to develop the after-treatment of diesel vehicles which reduce NOx emissions. It is possible to use DOC, DPF, LNT or DOC, DPF and SCR as a after-treatment system for reducing NOx. However, It is expected that the SCR will be applied widely because LNT alone does not have sufficient NOx purification efficiency. In this study, It tried to analyze the efficiency of reducing NOx emissions during the mode test by attaching a NOx sensor to test vehicle. As a result, It was confirmed that NOx emissions was significantly reduce through the after-treatment system from engine. And the NOx reduction efficiency of SCR was about 4.5 times better than DOC, DPF.

흡장형 De-NOx 촉매(LNT) 시스템의 환원제 분무용 인젝터 종류에 따른 NOx저감효율 연구 (A Study on NOx Reduction Efficiency according to Various Injectors used for De-NOx System)

  • 한영덕;오정모;이기형;이진하;문웅기
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.117-124
    • /
    • 2011
  • Automotive engines require strategies to fulfill the emission regulations in terms of NOx and PM. A dramatic reduction in NOx and PM emissions could be achieved with high pressure injection, innovative combustion strategies and EGR. Recently, Lean NOx Trap (LNT) and Urea-SCR are considered as more practical strategy to suppress the engine-out emissions substantially for copying with severe regulation. These systems need to reduce the reducing agent injection system which has a huge impact on NOx purification efficiency. In this paper, different three injectors have been used to investigate spray characteristics and engine emission test was conducted to clarify the effect of these injectors on the NOx reduction.

상세화학반응식을 이용한 HCCI 엔진의 성능 해석기법 연구 (A Cycle Simulation Method for an HCCI Engine using Detailed Chemical Kinetics)

  • 송봉하;김동광;조남효
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.51-58
    • /
    • 2003
  • A cycle simulation method is developed by coupling a commercial code, Ricardo's WAVE, with the SENKIN code from CHEMKIN packages to predict combustion characteristics of an HCCI engine. By solving detailed chemical kinetics the SENKIN code calculates the combustion products in the combustion chamber during the valve closing period, i.e. from IVC to EVO. Except the combustion chamber during the valve closing period the WAVE code solves thermodynamic status in the whole engine system. The cycle simulation of the complete engine system is made possible by exchanging the numerical solutions between the codes on the coupling positions of the intake port at IVC and of the exhaust port at EVO. This method is validated against the available experimental data from recent literatures. Auto ignition timing and cylinder pressure are well predicted for various engine operating conditions including a very high ECR rate although it shows a trend of sharp increase in cylinder pressure immediate after auto ignition. This trend is overpredicted especially for EGR cases, which may be due to the assumption of single-zone combustion model and the limit of the chemical kinetic model for the prediction of turbulent air-fuel mixing phenomena. A further work would be needed for the implementation of a multi-zone combustion model and the effect of turbulent mixing into the method.

박판 딤플 성형을 위한 유한요소해석 및 성형성 평가 (Finite Element Analysis and Formability Evaluation for Dimple Forming with Thin Sheet Metal)

  • 허성찬;서영호;구태완;송우진;김정;강범수
    • 소성∙가공
    • /
    • 제16권8호
    • /
    • pp.621-628
    • /
    • 2007
  • Nowadays, Exhaust Gas Recirculation(EGR) Cooler is one of the most favorite systems for reducing the generation amount of $NO_x$ and other particle materials from vehicles burning diesel as fuel. Efficiency of the system is mainly dependent on its heat transfer efficiency and this ability is affected by net heat transferring area of the system. For that reason, several types of heat transfer tube such as dimple, wrinkle and spiral types that have large net area are used. However, it is difficult to manufacture the rectangular tube with dimpled type structure because it experiences too much strain around the rectangular tube surface during the forming process. For that reason, in this study, numerical simulation for forming process of non-symmetric dimple shape on a thin sheet metal was carried out. Furthermore, theoretical forming limit curves(forming limit diagram, forming limit stress diagram) were proposed as criteria of formability evaluation. From the results of finite element simulation in view of stress and strain distribution, it is found that the designed process has robustness and feasibility to safely manufacture the dimpled rectangular tube.

고속응답 $CO_2$ 분석기의 제작 및 이를 이용한 SI 엔진에서의 실시간 배기가스 분석에 관한 연구 (Development of Fast-Response $CO_2$ Analyzer and Analysis of Engine-out Emission during Transient Condition of SI engine)

  • 송현수;민경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3079-3084
    • /
    • 2008
  • A fast response $CO_2$ analyzer has been developed for measuring the $CO_2$ concentration during transient condition of SI engine. The analyzer is based on the non-dispersive infrared absorption technique, electrical chopping system and water cooling system. The analyzer has good repeatability, linearity and permissible drift characteristic. Besides, it has 18ms with a response to measure the $CO_2$ concentration. The fast response $CO_2$ analyzer was applied to single cylinder SI engine and the $CO_2$ emission was examined during engine start. Simultaneously, the standard exhaust gas analyzer, which has slow response time, was used for considering the engine-out $CO_2$ characteristic. The developed analyzer showed much faster responsive characteristic than that of a standard analyzer and made cycle by cycle exhaust gas analysis possible. The transient engine operating characteristics will be estimated and the transient behaviors on engine-out emission and performance will be improved.

  • PDF

건설기계 디젤엔진용 실시간 시뮬레이터 개발 (Development of Real-Time Simulator for a Heavy Duty Diesel Engine)

  • 노영창;박경민;오병걸;고민석;김낙인
    • 대한기계학회논문집A
    • /
    • 제39권2호
    • /
    • pp.203-209
    • /
    • 2015
  • 건설기계 산업에서 배기 및 연비 규제를 만족하기 위하여 엔진 시스템이 점차 전자제어화 되고 있으며, 이를 제어하기 위한 EMS(Engine Management System)의 복잡도 또한 증가하고 있다. 본 연구에서는 EMS function 개발 시, 비용 및 개발기간의 단축을 위한 HiLS(Hardware in the Loop Simulation) 시스템을 개발하였다. HiLS 에 내장된 엔진 모델은 크게 Air, Fuel, Torque 및 동력계 모델로 구성되어있고 실시간 엔진 모사를 위하여 Mean value modeling 방법을 적용하였다. 이 연구를 통하여 개발한 HiLS 시스템은 EGR(Exhaust Gas Recirculation) 시스템과 Turbocharger 가 장착된 건설기계용 디젤엔진을 이용하여 정확성을 검증하였고, 테스트 결과 실 엔진 대비 90% 이상의 정확도를 얻었다.

승용 디젤 엔진의 후처리 시스템 적용에 따른 나노입자 배출 맵 구축 및 저감특성에 관한 연구 (Study of Particle Emission Contour Construction & Characteristics and Reduction Efficiency of Exhaust-Treatment System of Diesel Engine)

  • 고아현;황인구;명차리;박심수;최회명
    • 대한기계학회논문집B
    • /
    • 제34권8호
    • /
    • pp.755-760
    • /
    • 2010
  • 본 연구는 승용 디젤엔진의 입자상 물질 배출특성에 관한 것으로써, 엔진에서 배출된 입자상 물질이 배기관 및 후처리장치인 디젤산화촉매와 매연여과장치를 통과할 때의 특성 변화를 파악하기 위하여 후처리장치 각각 전 후단 및 배기관에서 직접 측정하였다. 또한 다양한 엔진회전속도 및 부하조건에서 측정함으로써 입자상 물질 배출 맵을 구축하였으며, 디젤산화촉매 및 매연여과장치의 입자상 물질 저감효과에 대해 평가하였다. 뿐만 아니라 배기재순환율과 연료분사시기를 변경시켜 입자상 물질의 배출특성 변화를 파악하였다. 모든 시험에서 입자상 물질을 5~1000nm 크기까지 측정할 수 있는 DMS500을 이용하였다.

상용 소프트웨어를 이용한 스파크 점화 기관의 시뮬레이션에 관한 연구 (Study on the simulation of a spark ignition engine using BOOST)

  • 정창식;우석근;류순필;윤건식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권9호
    • /
    • pp.733-742
    • /
    • 2016
  • 연료 경제와 유해 배출 가스 저감을 목적으로 최근 들어 LNG 또는 합성 가스를 사용하는 박용 가스 기관이 주목받고 있다. 예혼합 연소를 하는 오토 사이클로 작동하는 가스 기관을 구현할 경우 EGR 또는 SCR을 적용하지 않고도 Tier III의 규제를 충족할 수 있는 것으로 확인되고 있다. 본 연구에서는 오토 사이클로 작동하는 기관에 대한 시뮬레이션 기술을 산업 기술 현장에 제공하기 위한 목적으로, 실험적으로 접근이 용이한 소형 가솔린 기관을 대상으로 상용 소프트웨어인 BOOST를 이용한 시뮬레이션을 시행하였다. 이 연구는 두 단계로 구성되어 이미 시행한 첫 번째 단계에서는 흡기 및 배기 계통에 대한 최적의 모델링 방법에 관한 연구가 수행되었다. 이번 연구는 이전의 연구에서 선정된 흡 배기 계통의 해석 모델을 적용한 상황에서 실린더 내 과정을 해석하고 최종적으로 주요 성능 인자들을 계산하는 방법을 정립하였다. 이 연구를 통하여 실험에의 의존이 적은 연소 및 열전달 모델과 밸브 유량계수 모델을 선정하고 관련 상수들을 결정하는 방법을 확립하였다. 이들을 이용하여 실린더로 유입되는 공기량, 실린더 내 순간 압력 변화 및 도시평균유효압력을 효과적으로 예측할 수 있음을 확인하였다.

THEORETICAL FLOW ANALYSIS AND EXPERIMENTAL STUDY ON TIME RESOLVED THC FORMATION WITH RESIDUAL GAS IN A DUAL CVVT ENGINE

  • Myung, C.L.;Kwak, H.;Hwang, I.G.;Park, S.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.697-704
    • /
    • 2007
  • Recently, a variable valve timing system has been widely adopted in internal combustion engine in order to improve the fuel economy and torque at low engine speed. In addition, it is known that varying valve timing according to the various engine operations could reduce exhaust gas, especially NOx, because of residual gas by valve overlap. In this study, to improve the low exhaust gas and fuel economy at part load condition, the residual gas and back flow of exhaust gas due to valve overlap were calculated computationally. Moreover, the characteristics of engine performances and NOx formations were investigated with the experiment of combination of intake and exhaust valve timing condition. Under these various valve operating conditions, the effects of both the positive valve overlap and negative valve overlap(valve underlap) were examined simultaneously. Finally, the characteristics of cyclic THC emission were analyzed by using Fast Response FID(FR-FID) in the cylinder, intake port and exhaust port positions. Besides, the effect of the different gradients of the valve timing change on engine performance was investigated and an optimum control strategy was suggested.