• Title/Summary/Keyword: EGR rate

Search Result 164, Processing Time 0.129 seconds

Effect of EGR on power and exhaust emissions in diesel engine (디젤엔진의 출력 및 배기가스에 미치는 EGR의 영향)

  • Song, Kyu-keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.870-875
    • /
    • 2015
  • Diesel engines are widely used due to superior power and fuel consumption, however there are many challenges in exhaust gas management. Exhaust gas recirculation (EGR) is the most effective technique for reducing mono-nitrogen oxide (NOx) emissions in a diesel engine, in comparison with other catalytic technologies. In addition, the technology has a number of advantages in terms of economic efficiency and implementation. In this study, the effects on the power and exhaust characteristics of diesel engines equipped with EGR systems were investigated. It was found that as the EGR rate increased, horsepower expressed as IHP and BHP decreased. The net effect of the application of EGR was measured at various engine speeds. EGR technology caused decreases in BHP of around 9% during low engine speed and 3.5% during high engine speed. Additionally, NOx emissions reduced as the EGR rate increased, and increased as engine speed increased. However, smoke emissions increased as the EGR rate increased, and decreased as engine speed increased. The optimum operating conditions and ERG rate to simultaneously achieve minimum NOx and smoke emissions were investigate. It was found that as the EGR rate increased, optimal operating speed for minimal NOx and smoke also increased. Keywords: Diesel engine, Exhaust gas recirculation, Power perfomance, Emission characteristics, NOx, Smoke

A Study on Exhaust Gas Emissions Characteristics of EGR with Scrubber for Marine Diesel Engine (선박용 디젤기관에 있어서 스크러버형 배기재순환 시스템의 배기배출물 특성에 관한 연구)

  • 임재근;조상곤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.57-62
    • /
    • 2000
  • The effect of exhaust gas recirculation(EGR) on the characteristics of exhaust gas emissions, and SFC are experimentally investigated by four-cylinder, four-cycle and direct injection marine diesel engine. In order to reduce the soot contents in the recirculated exhaust gas to intake system of the engines, a soot removal system of a cylinderical-type scrubber is specially designed and manufactured for the experimental system. (1) SFC is increased in downward convex curve style with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio. (2) NOx emission is reduced in downward convex curve style with increasing excess air ratio, it is reduced with increasing EGR rate at the same excess air ratio. (3) Soot emission is decreased in downward convex curve style with increasing excess air ratio, it is reduced with increasing EGR rate at the same excess air ratio. (4) CO emission is increased in nearly straight line style with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio. (5) HC emission is not constant tendency with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio.

  • PDF

A Study on the Characteristics of Exhaust Emissions in Diesel Engines with Scrubber EGR System (스크러버형 EGR시스템 디젤기관의 배기 배출형 특성에 관한 연구)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.481-489
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristics of fuel economy combustion and exhaust emissions have been experimentally investigated by a four-cylinder four cycle indirect injection water-cooled and marine diesel engine operating at several loads and speeds. in order to reduce the soot contents in the recirculated exhaust gas to intake system of the engine a novel diesel soot removal system with a cylinder-type scrubber which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured for the experiment system The experiments in this study are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions, The brake specific fuel consumption rate is slightly fluctuated with EGR in the range of experimental conditions, The maximum value of premixed combustion for the rate of heat release is decreased with EGR at engine load 25% and the ignition is slightly delayed with EGR at engine load 100% NOx emissions are markedly decreased with EGR especially at high loads while soot emissions are increased as the EGR rate rises.

  • PDF

A Study on Effect of EGR upon Fuel Consumption Rate and NOx Emission in Diesel Engines (디젤기관의 연료소비율 및 질소산화물 배출물에 미치는 EGR의 영향에 관한 연구)

  • Bae, M.W.;Lim, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.76-88
    • /
    • 1995
  • The effects of exhaust gas recirculation(EGR) on the characteristics of NOx emissions and specific fuel consumption rate have been investigated using an eight-cylinder. four cycle. direct injection diesel engine operating at several loads and speeds. The theoretical NO formation concentration is calculated with the equivalence ratio as a parameter of flame temperature to study the effect of EGR on NOx emissions in the diesel combustion. The experiments in this study are conducted on the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. It is found that the specific fuel consumption rate is slightly increased with EGR rate. and NOx emissions are markedly reduced owing to the drop of the incoming oxygen concentratio and the increase of equivalence ratio as the EGR rate increases.

  • PDF

The Characteristic Analysis of EGR Valve Motor (EGR 밸브 용 모터 특성 분석)

  • Heo, Jun-Ho;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.137-146
    • /
    • 2016
  • An increase in EGR rate can reduce NOx emissions. On the other hand, an excessive EGR rate is a major cause of incomplete combustion. Precise position control of the EGR valve that is optimized for the operating conditions of the engine should be supported to meet the strict emission regulations. Accordingly, this study performed mathematical modeling and control theory for characteristic analysis of an EGR valve motor. Because it is a step for controlling the position of the EGR valve motor using the Microchip development tool, this study analyzed the characteristics of the motor for each opening and closing section according to the input value of the duty ratio of PWM (Pulse Width Modulation).

Factor Analysis on Exhaust Gas Emissions of Small DI Diesel Engine (직접분사식 소형 디젤엔진의 배기배출물에 대한 인자분석적 고찰)

  • JANG, Se-Ho;KIM, Yeong-Sik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.586-592
    • /
    • 2017
  • This study analyzed the effect of four control factors, RPM, load, EGR rate and cooling water temperature on the exhaust emissions of the small DI diesel engine. The amount of NOx and smoke emissions were measured through experiments for three levels of four control factors according to orthogonal array table, and the effect of four factors on NOx and smoke emissions was analyzed quantitatively. The main results obtained in this study are summarized as follows: 1. RPM, load and EGR rate have a great influence on NOx and smoke emissions, and the effect of cooling water temperature is negligible. 2. As RPM and load increases NOx emission increases and decreases sharply as the EGR rate increases. 3. Smoke emission decreases or increases randomly according to RPM and load, but increases sharply in proportion to the EGR rate. 4. EGR rate has the greatest effect on NOx and smoke emissions by more than 60% of contribution to variance, especially in the case of NOx emission, EGR rate represents a significant result even under the confidence level of 99% on ANOVA.

Effects on Performance Characteristics of Diesel Engine by EGR system with Scrubber (Scrubber를 장착한 EGR 시스템이 디젤기관의 성능특성에 미치는 영향)

  • 임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.184-191
    • /
    • 1999
  • Th effects of exhaust gas recirculation(EGR) on the characteristics of combustion exhaust emissions and specific fuel consumption(SFC) are experimentally investigated by four-cylin-der four-cycle and direct injection marine diesel engine. In order to reduce soot contents in the recirculated exhaust gas to intake system of the engines a novel diesel soot removal system with a cylinder-type scrubber which has water injector(4 nozzles in 1.0mm diameter)is specially designed and manufactured for the experi-mental system. The obtained results are as follows; The combustion pressure in cylinder is decreased and ignition is delayed with increasing EGR rate. The accumulated quantity of heat release is slightly decreased and the tendency of heat release rate is not constant. NOx and Soot emissions are decreased by maximum 7% and 540% with scrubber tan without scrubber in the range of experimental conditions. Those are increased at the lean burn area with increasing equivalence ration in the constant value of engine speed and EGR rate. Also those are decreased with increasing EGR rate in the constant value of engine speed and equivalence ratio.

  • PDF

The Experimental Study on the Low-temperature Combustion Characteristics of DME Fuel in a Compression Ignition Engine

  • Yoon, Seung Hyun
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.190-196
    • /
    • 2017
  • The aim of this work is to investigate the combustion and exhaust emission characteristics of low-temperature combustion (LTC) at various EGR test conditions using a single cylinder common-rail diesel engine. In high EGR rate combustion mode with DME fuel, 30% (${\Phi}=0.61$) and 50% (${\Phi}=0.86$) of EGR were respectively examined, and then the combustion, exhaust emissions, nano-particle characteristics of each cases were measured. From these results, it revealed that The ignition delay and combustion duration are prolonged as the increase of EGR rate. In addition, at an advanced injection timing (BTDC $30^{\circ}$), ignition delays were fairly increased because the dilution effect of EGR and also low charge in-cylinder temperature created a lean mixture, thus decreased the peak release rate.

Performance Characteristics of an Electronically Controlled EGR Valve for Diesel Engines (디젤엔진용 전자식 EGR 밸브의 성능 특성)

  • Chung, Jin-Eun;Chin, Young-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.185-188
    • /
    • 2007
  • Lately, the modulated EGR system that includes EGR valve and EGR cooler is being installed in diesel engines fur the purpose of the simultaneous reduction of NOx and PM. In this study. we designed and constructed a test bench for the performance evaluation of the modulated EGR system, and tested an electronically controlled EGR valve for 2.0 L diesel engines. The performance of the EGR valve was evaluated in terms of the valve lift behavior. the valve opening/closing response, and the mass flow rate through the valve. The valve lift with respect to the duty ratio of PWM signal was non-linear, and followed a different path fur valve opening and closing, that is, hysteresis. The valve opening response was concluded satisfactory falling within the usual standard response time. For the duty ratio of 40 to 60%, the mass flow rate through the valve was observed to depend on the pressure difference across the valve as well as the duty ratio, while it solely depended on the pressure difference fur the duty ratio above 60%.

  • PDF

Analysis of Performance Characteristics on Diesel Engine with Aftertreatment and EGR System (후처리 시스템을 장착한 디젤엔진의 EGR 밸브 작동에 따른 성능 분석)

  • Park, Cheol-Woong;Choi, Young;Lim, Gi-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.124-129
    • /
    • 2010
  • The direct injection (DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides (NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing hybrid system consist of exhaust gas recirculation (EGR) and aftertreatment system as well as diesel particulate filter (DPF) or lean NOx trap (LNT) should be applied. The variation of EGR rate due to the malfunction of EGR valve can affect not only the combustion stability of engine but also the performance of aftertreatment system. In this research, 2.0 liter 4-cylinder turbocharged diesel engine was used to investigate the combustion and emission characteristics for various operating conditions with EGR. While the fuel consumption was increased with increase of EGR rate, NOx emission was improved by maximum 90% at low speed, low load operating condition. To achieve combustion stability and reliability of aftertrearment system with minimum penalty in fuel consumption and emissions, the fault diagnosis of EGR malfunction must be employed.