• Title/Summary/Keyword: EGR 가스 온도

Search Result 20, Processing Time 0.03 seconds

A Numerical Study on Combustion Characteristics of HCCI Engine with Stratification Condition of EGR Exhaust Gases (EGR 배기가스의 성층화 조건에 따른 HCCI 엔진의 연소 특성에 관한 수치해석 연구)

  • Lee, Won-Jun;Lee, Seung-Ro;Lee, Chang-Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.46-52
    • /
    • 2011
  • Homogeneous charge compression ignition (HCCI) is the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process is mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. However, HCCI engine's operation have an excessive rate of pressure rising during the combustion process. In this study, stratification condition of EGR exhaust gases was used to reduce the pressure rising during the combustion process in HCCI engine. Also, combustion characteristics and emissions characteristics were investigated using the detailed diesel surrogate reaction mechanism.

Study on Fuel Consumption Improvement in SI Engine with EGR for Hybrid Electric Vehicle (하이브리드용 가솔린엔진의 EGR을 통한 연비향상에 관한 연구)

  • Park, Cheol-Woong;Choi, Young;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.128-135
    • /
    • 2008
  • EGR(exhaust gas recirculation) is considered as a most effective method to reduce the NOx emissions. But high EGR tolerance is always pursued not only for its advantages of the pumping loss reduction and fuel economy benefit in Gasoline-Hybrid engine. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR on fuel efficiency, combustion stability, engine performance and exhaust emissions. With optimal EGR rates, the fuel consumption was improved by 4%. This improvement was achieved while a reduction in NOx emissions of 75% was accomplished. Increase of EGR gas temperature causes the charge air temperature to affect the knock phenomenon and moreover, the EGR valve lift changes for the same control signal.

Experimental Study on the Energy Separation of the Vortex Tube for EGR Cooler (EGR Cooler 대체용 Vortex Tube의 에너지 분리 현상에 관한 실험적 연구)

  • Kim, Chang-Su;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • Vortex tube is the device that can separate small particles from the compressed gas, as well as compressed gas into hot and cold flow. Due to energy separation ability, a vortex tube can substitute for an EGR cooler of the automotive engine. In this study, experimental approach has been performed to analyze the energy separation characteristics of the vortex tube. Energy separation characteristics of the vortex tube has been tested for supply pressure, cold-out pressure, and hot-out pressure. As increasing supply pressure, energy separation effect increased. Maximum temperature exists about 0.85 of the cold-out-flow-ratio, and minimum exists about 0.35. Hot-out temperature of the vortex tube is affected by the hot-out and cold-out pressure. However, for the given conditions, cold-out temperature is independent of exit pressure change. The results from this study can be used for the basic design parameter of the EGR cooler substitute of an automotive engine.

Fundamental Study on the Development of the EGR Efficiency (Part I: Effects of Reformer Gas Addition in $CH_4/air$ Premixed Flames) (다양한 연료의 EGR 성능개선에 관한 기초연구(Part I: 메탄/air 예혼합화염에서 RG의 첨가효과))

  • Lee, Chang-Eon;Hwang, Cheol-Hong;Tak, Young-Jo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.33-39
    • /
    • 2007
  • In this study, the effect of reformer gas(RG) on the performance development of the exhaust gas recirculation(EGR) was investigated numerically in $CH_4/air$ premixed flame. Typically EGR is used to reduce the flame temperature and NOx emission, whereas RG can be used to improve the flame stability, such as homing velocity. This competitive relationship is focused in this study. As a result, it can be identified that the adjustments of EGR and RG ratio can achieve the low NOx emission and the similar flame stability to pure $CH_4/air$ premixed flame simultaneously.

  • PDF

Effects of Exhaust Gas Recirculation on Power and Thermal Efficiency of Reactivity Controlled Compression Ignition in Different Load Conditions with a 6-L Engine (6 L급 압축착화 기관에서 천연가스-디젤 반응성 조정 연소 시 부하에 따른 배기 재순환율이 출력 및 열효율에 미치는 영향 분석)

  • Lee, Sunyoup;Lee, Seok-Hwan;Kim, Chang-Gi;Lee, Jeong-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.1-10
    • /
    • 2020
  • Reactivity controlled compression ignition (RCCI) combustion is one of dual-fuel combustion systems which can be constructed by early diesel injection during the compression stroke to improve premixing between diesel and air. As a result, RCCI combustion promises low nitrogen oxides (NOx) and smoke emissions comparing to those of general dual-fuel combustion. For this combustion system, to meet the intensified emission regulations without emission after-treatment systems, exhaust gas recirculation (EGR) is necessary to reduce combustion temperature with lean premixed mixture condition. However, since EGR is supplied from the front of turbocharger system, intake pressure and the amount of fresh air supplementation are decreased as increasing EGR rate. For this reason, the effect of various EGR rates on the brake power and thermal efficiency of natural gas/diesel RCCI combustion under two different operating conditions in a 6 L compression ignition engine. Varying EGR rate would influence on the combustion characteristic and boosting condition simultaneously. For the 1,200/29 kW and 1,800 rpm/(lower than) 90 kW conditions, NOx and smoke emissions were controlled lower than the emission regulation of 'Tier-4 final' and the maximum in-cylinder pressure was 160 bar for the indurance of engine system. The results showed that under 1,200 rpm/29 kW condition, there were no changes in brake power and thermal efficiency. On the other hand, under 1,800 rpm condition, brake power and thermal efficieny were decreased from 90 to 65 kW and from 37 to 33 % respectively, because of deceasing intake pressure (from 2.3 to 1.8 bar). Therefore, it is better to supply EGR from the rear of compressor, i.e. low pressure EGR (LP-EGR) system, comparing to high pressure EGR (HP-EGR) for the improvement of RCCI power and thermal efficiency.

Performance and Emission Characteristics in a Spark-Ignition LPG Engine with Exhaust Gas Recirculation (EGR 장착 스파크 점화 LPG 엔진의 성능 및 배기특성)

  • 조윤호;구준모;장진영;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.24-31
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of EGR (Exhaust Gas Recirculation) variables on performance and emission characteristics in a 2-liter 4-cylinder spark-ignition LPG fuelled engine. The effects of EGR on the reduction of thermal loading at exhaust manifold were also investigated because the reduced gas temperature is desirable for the reliability of an engine in light of both thermal efficiency and material issue of exhaust manifold. The steady-state tests show that the brake thermal efficiency increased and the brake specific fuel consumption decreased with the increase of EGR rate in hot EGR and with the decrease of EGR temperature in case of cooled EGR, while the stable combustion was maintained. The increase of EGR rate or the decrease of EGR temperature results in the reduction of NOx emission even in the increase of HC emission. Furthermore, decreasing EGR temperature by $180^{\circ}C$ enabled the reduction of exhaust gas temperature by $15^{\circ}C$ in cooled EGR test at 1600rpm/370kPa BMEP operation, and consequently the reduction of thermal load at exhaust. The optimization strategy of EGR application is to be discussed by the investigation on the effect of geometrical characteristics of EGR-supplying pipe line.

Study on Structural Safety Analysis of EGR Valve (EGR Valve의 구조 안전성 해석에 관한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.528-534
    • /
    • 2011
  • This study analyzes thermal stress and durability fatigue on the modelling of EGR valve. In case of 10% opening at its inlet, the minimum temperature gets cool as 3 times as inlet temperature. The maximum equivalent stress becomes lowest as the value of $2.6274{\times}109$ Pa and fatigue life becomes highest as 23.657 Cycle. But the minimum temperature gets cool as 2.2 times as inlet temperature in case of 50% opening at its inlet. The equivalent stress becomes higher and fatigue life becomes lower than in case of 10% opening. In case of 100% opening at its inlet, the minimum temperature gets cool as 0.2 times as inlet temperature. The equivalent stress becomes lower and fatigue life becomes higher than in case of 50% opening. Maximum equivalent stress and total deformation are shown at the closing of EGR valve by the pressure of inflow gas. The structural analysis result of this study can be effectively utilized with the design of EGR valve by investigating prevention and durability against its damage.

Effects of Aromatics and T90 Temperature of Low Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion (저온디젤연소에서 저세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1121-1126
    • /
    • 2010
  • This study is to investigate the effects of aromatics and T90 for low cetane number (CN) fuels on combustion and exhaust emissions in low-temperature diesel combustion. We use a 1.9-L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Low temperature diesel combustion was achieved via a high external EGR rate and strategic injection control. The tested fuels four sets: the aromatic content was 20% (A20) or 45% (A45) and the T90 temperature was $270^{\circ}C$ (T270) or $340^{\circ}C$ (T340) with CN 30. Given the engine operating conditions, the T90 was the stronger factor on the ignition delay time, resulting in a longer ignition delay time for higher T90 fuels. All the fuels produced nearly zero PM because of the extension of the ignition delay time induced by the low cetane number. The aromatic content was the main factor that affected the NOx and the NOx increased with the aromatic content.

A Study for Failure Examples of Emission Gas Recirculation and Air Control and Catalyzed Particulate Filter System in Diesel Engine Vehicle (디젤엔진 자동차의 EGR 및 공기 제어와 CPF 장치에 관련된 고장사례 고찰)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Lee, Young Suk;Youm, Kwang Wook;You, Chang Bae;Kim, Sung Mo;Lim, Ha Young;Ahn, Ho Cheol;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.78-83
    • /
    • 2018
  • The purpose of this paper is to study for failure examples of emission gas recirculation and air control and catalyzed particulate filter system in diesel engine vehicle. The first example, the researcher found the fact that the much engine oil came into the intake manifold causing diaphragm damage of EGR valve. The engine oil entered into combustion chamber of engine so that a car emit the polluted exhaust gas when driving. The second example, the researcher certified the sticking phenomenon of carbon and foreign substance with the throttle flap so that the exhaust fumes discharged exhaust port. The third example, the regeneration function don't activated to not detect the temperature of exhaust gas because of damage in the sensor. Thus, the researcher must meticulously manage his car not in order to take place the problem of environmental pollution.

Parametric Study for Reducing NO and Soot Emissions in a DI Diesel Engine by Using Engine Cycle Simulation (직분식 디젤엔진에서 엔진 매개변수들이 NO 및 soot 배출에 미치는 영향에 대한 수치해석 연구)

  • 함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.35-44
    • /
    • 2002
  • Engine cycle simulation using a two-zone model was performed to investigate the effect of the engine parameters on NO and soot emissions in a DI diesel engine. The present model was validated against measurements in terms of cylinder pressure, BMEP, NO emission data with a 2902cc turbocharger/intercooler DI diesel engine. Calculations were made for a wide range of the engine parameters, such as injection timing, ignition delay, Intake air pressure, inlet air temperature, compression ratio, EGR. This parametric study indicated that NO and soot emissions were effectively decreased by increasing intake air pressure, decreasing inlet air temperature and increasing compression ratio. By retarding injection timing, increasing ignition delay and applying EGR. NO emission was effectively reduced, but the soot emission was increased.