• Title/Summary/Keyword: EGR (Exhaust Gas Recirculation)

Search Result 198, Processing Time 0.019 seconds

Performance and Emission Characteristics in a Spark-Ignition LPG Engine with Exhaust Gas Recirculation (EGR 장착 스파크 점화 LPG 엔진의 성능 및 배기특성)

  • 조윤호;구준모;장진영;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.24-31
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of EGR (Exhaust Gas Recirculation) variables on performance and emission characteristics in a 2-liter 4-cylinder spark-ignition LPG fuelled engine. The effects of EGR on the reduction of thermal loading at exhaust manifold were also investigated because the reduced gas temperature is desirable for the reliability of an engine in light of both thermal efficiency and material issue of exhaust manifold. The steady-state tests show that the brake thermal efficiency increased and the brake specific fuel consumption decreased with the increase of EGR rate in hot EGR and with the decrease of EGR temperature in case of cooled EGR, while the stable combustion was maintained. The increase of EGR rate or the decrease of EGR temperature results in the reduction of NOx emission even in the increase of HC emission. Furthermore, decreasing EGR temperature by $180^{\circ}C$ enabled the reduction of exhaust gas temperature by $15^{\circ}C$ in cooled EGR test at 1600rpm/370kPa BMEP operation, and consequently the reduction of thermal load at exhaust. The optimization strategy of EGR application is to be discussed by the investigation on the effect of geometrical characteristics of EGR-supplying pipe line.

A Study on Effects of Exhaust Emissions with Oxygenated Fuel(DGM) and EGR Method in a Diesel Engine (함산소연료(DGM)와 EGR 방법이 디젤기관의 배기배출물에 미치는 영향에 관한 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1691-1698
    • /
    • 2003
  • In this paper, the combination effects of oxygen component in fuel and exhaust gas recirculation on the exhaust emissions have been investigated for a direct injection diesel engine. It is a kind of effective oxygenated fuel of diether group that the smoke emission of DGM(diethylene glycol dimethyl ether) blended fuel is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. But, NOx emission of oxygenated fuel was increased compared with commercial diesel fuel. Also, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission has been investigated. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel(DGM 5vol-%) and cooled EGR method(10∼15%).

An Experimental Study on Effects of EGR Rate upon Exhaust Emissions in Small High-Speed Diesel Engines (소형 고속 디젤기관의 배기 배출물에 미치는 배기 재순환율의 영향에 관한 실험적 연구)

  • 임재근;배명환;김종일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.60-77
    • /
    • 1992
  • The effects of exhaust gas recirculation(EGR) on the characteristics of exhaust emissions and specific fuel consumption have been investigated using an eight-cylinder, four cycle, direct injection diesel engine operating at several loads and speeds. The experiments in this study are conducted on the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. In conclusion, it is found that $NO_{x}$ emission is markedly reduced with the drop of burnt gas temperature at high speeds and loads especially as the EGR rate increases, while the soot particulate rises with EGR rate and load at a given engine speed, especially high loads. The reduction of exhaust emissions within the Korea heavy duty diesel engine emission standards can be roughly achieved by the optimal EGR rate without degarding the specific fuel consumption, based on the correlations between exhaust emissions.

  • PDF

Performance and Emission Characteristics of Liquid-Phase LPG Injection Engine with Different EGR Rate (EGR율 변화에 대한 액상 LPG분사 엔진의 운전 및 배출가스특성)

  • 염기태;우영민;장진영;박용국;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.7-14
    • /
    • 2003
  • Exhaust Gas Recirculation (EGR) system is used to reduce NOx emission, to improve fuel economy, and to suppress knock since it offers the benefits of the inlet charge dilution. The effects of EGR was investigated on the performance and emission to reduce exhaust thermal load with a single cylinder liquid-phase LPG injection engine, in a wide range of EGR rate, engine conditions and LPG proportions. As EGR rate was increased, NOx was reduced while HC was increased. Pumping loss reduction by EGR improved bsfc and increased EGR lowered exhaust gas temperature. And, LPG proportions were made a difference on the performance and emission characteristics.

Multidimensional Engine Modeling: NO and Soot Emissions in a Diesel Engine with Exhaust Gas Recirculation

  • Kim, Hongsuk;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1196-1204
    • /
    • 2001
  • The effects of EGR(Exhaust Gas Recirculation) on heavy-duty diesel engine performance, NO and soot emissions were numerically investigated using the modified KIVA-3V code. For the fuel spray, the atomization model based on the linear stability analysis and spray wall impingement model were developed for the KIVA-3V code. The Zeldovich mechanism for the formation of nitric oxide and the soot model suggested by Hiroyasu et al. were used to predict the diesel emissions. In this paper, the computational results of fuel spray, cylinder pressure, and emissions were compared with experimental data, and the optimum EGR rates were sought from the NO and soot emissions trade-off. The results showed that the EGR is effective in suppressing NO but the soot emission was increased considerably by EGR. Using cooled EGR, soot emission could be enhanced without worsening of NO.

  • PDF

The Effect of EGR on Exhaust Emissions in a Direct Injection Diesel Engine (직분식 소형 과급 디젤엔진에서 EGR이 배기배출물에 미치는 영향)

  • Jang, Se-Ho;Koh, Dae-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.188-194
    • /
    • 2005
  • The direct injection diesel engine is one of the most efficient thermal engines. For this reason DI diesel engines are widely used for heavy-duty applications. But the world is faced with very serious problems related to the air pollution due to the exhaust emissions of diesel engine. So, that is air pollution related to exhaust gas resulted from explosive combustion should be improved. Exhaust Gas Recirculation(EGR) is a proven method to reduce NOx emissions. In this study, the experiments were performed at various engine loads while the EGR rates were set from $0\%$ to $30\%.$ The emissions trade-off and combustion of diesel engine are investigated. The brake specific fuel consumption rate is very slightly fluctuated with EGR in the range of experimental conditions. The ignition delay increased with increasing EGR rate. The maximum value of premixed combustion for the rate of heat release is increased with increasing EGR rate. NOx emissions are decreased with increasing EGR rate at high load and high speed. It was found that the exhaust emissions with the EGR system resulted in a very large reduction in oxides of nitrogen at the expense of higher smoke emissions.

Study on Fuel Consumption Improvement in SI Engine with EGR for Hybrid Electric Vehicle (하이브리드용 가솔린엔진의 EGR을 통한 연비향상에 관한 연구)

  • Park, Cheol-Woong;Choi, Young;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.128-135
    • /
    • 2008
  • EGR(exhaust gas recirculation) is considered as a most effective method to reduce the NOx emissions. But high EGR tolerance is always pursued not only for its advantages of the pumping loss reduction and fuel economy benefit in Gasoline-Hybrid engine. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR on fuel efficiency, combustion stability, engine performance and exhaust emissions. With optimal EGR rates, the fuel consumption was improved by 4%. This improvement was achieved while a reduction in NOx emissions of 75% was accomplished. Increase of EGR gas temperature causes the charge air temperature to affect the knock phenomenon and moreover, the EGR valve lift changes for the same control signal.

A Study on Exhaust Gas Emissions Characteristics of EGR with Scrubber for Marine Diesel Engine (선박용 디젤기관에 있어서 스크러버형 배기재순환 시스템의 배기배출물 특성에 관한 연구)

  • 임재근;조상곤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.57-62
    • /
    • 2000
  • The effect of exhaust gas recirculation(EGR) on the characteristics of exhaust gas emissions, and SFC are experimentally investigated by four-cylinder, four-cycle and direct injection marine diesel engine. In order to reduce the soot contents in the recirculated exhaust gas to intake system of the engines, a soot removal system of a cylinderical-type scrubber is specially designed and manufactured for the experimental system. (1) SFC is increased in downward convex curve style with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio. (2) NOx emission is reduced in downward convex curve style with increasing excess air ratio, it is reduced with increasing EGR rate at the same excess air ratio. (3) Soot emission is decreased in downward convex curve style with increasing excess air ratio, it is reduced with increasing EGR rate at the same excess air ratio. (4) CO emission is increased in nearly straight line style with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio. (5) HC emission is not constant tendency with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio.

  • PDF

A Study on Thermal and Modal Characteristics for EGR System with Dimpled Rectangular Tube (딤플 사각 튜브형 배기 가스 재순환 시스템의 열 및 진동 특성에 관한 연구)

  • Seo, Young-Ho;Heo, Sung-Chan;Kwon, Young-Seok;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.115-125
    • /
    • 2008
  • Recently, Exhaust Gas Recirculation (EGR) system which re-flow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine has been used to solve the serious air pollution. For the design and mass production of EGR system, it is essential to ensure structural integrity evaluation. The EGR system consisted of ten dimpled oval core rectangular tubes, two fix-plates, two coolant pipes, shell body and two flanges in this study. To confirm the safety of the designed system, finite element modeling about each component such as the dimpled oval core tube with the dimpled shape and others was carried out. The reliability of EGR system against exhaust gas flow with high temperature was investigated by flow and pressure analysis in the system. Also, thermal and strength analysis were verified the safety of EGR system against temperature change in the shell and tubes. Furthermore, modal analysis using ANSYS was also performed. From the results of FE analysis, there were confirmed that EGR system was safe against the flow of exhaust gas, temperature change in EGR system and vibration on operation condition, respectively.

A Study on the Exhaust Emission Characteristics with EGR Application in a DI Diesel Engine (직접분사식 디젤기관에서 EGR 적용시의 배기배출특성에 관한 연구)

  • Choi, S.H.;Oh, Y.T.;Kwon, K.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.10-14
    • /
    • 2005
  • The Effects of cooled and hot EGR(exhaust gas recirculation) on the characteristics of smoke and NOx emission have been investigated using a single cylinder, water-cooled, four cycle, DI diesel engine at several loads and speeds. In this study, a manually controlled EGR system was installed on a agricultural diesel engine which was operated at various operating system. And, the effects of hot EGR and cooled EGR on smoke and NOx emission were compared. The results showed that cooled EGR method was more effective than hot EGR method on smoke and NOx emission.

  • PDF