• Title/Summary/Keyword: EGFR signaling

Search Result 74, Processing Time 0.027 seconds

Endocytic Regulation of EGFR Signaling

  • Chung, Byung-Min
    • Interdisciplinary Bio Central
    • /
    • v.4 no.2
    • /
    • pp.3.1-3.7
    • /
    • 2012
  • Epidermal growth factor receptor (EGFR) is a member of the ErbB family (ErbB1-4) of receptor tyrosine kinases (RTKs). EGFR controls numerous physiological functions, including cell proliferation, migration, differentiation and survival. Importantly, aberrant signaling by EGFR has been linked to human cancers in which EGFR and its various ligands are frequently overexpressed or mutated. EGFR coordinates activation of multiple downstream factors and is subject of various regulatory processes as it mediates biology of the cell it resides in. Therefore, many studies have been devoted to understanding EGFR biology and targeting the protein for the goal of controlling tumor in clinical settings. Endocytic regulation of EGFR offers a promising area for targeting EGFR activity. Upon ligand binding, the activated receptor undergoes endocytosis and becomes degraded in lysosome, thereby terminating the signal. En route to lysosome, the receptor becomes engaged in activating various signaling pathways including PI-3K, MAPK and Src, and endocytosis may offer both spatial and temporal regulation of downstream target activation. Therefore, endocytosis is an important regulator of EGFR signaling, and increasing emphasis is being placed on endocytosis in terms of cancer treatment and understanding of the disease. In this review, EGFR signaling pathway and its intricate regulation by endocytosis will be discussed.

Dual effects of a CpG-DNAzyme targeting mutant EGFR transcripts in lung cancer cells: TLR9 activation and EGFR downregulation

  • Jang, Dahye;Baek, Yu Mi;Park, Hanna;Hwang, Yeo Eun;Kim, Dong-Eun
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.27-32
    • /
    • 2018
  • Non-small-cell lung cancer (NSCLC) is commonly caused by a mutation in the epidermal growth factor receptor (EGFR) and subsequent aberrant EGFR signaling with uncontrolled kinase activity. A deletion mutation in EGFR exon 19 is frequently observed in EGFR gene mutations. We designed a DNAzyme to suppress the expression of mutant EGFR by cleaving the mutant EGFR mRNA. The DNAzyme (named Ex19del Dz) specifically cleaved target RNA and decreased cancer cell viability when transfected into gefitinib-resistant lung cancer cells harboring EGFR exon 19 deletions. The DNAzyme decreased EGFR expression and inhibited its downstream signaling pathway. In addition to EGFR downregulation, Ex19del Dz containing CpG sites activated Toll-like receptor 9 (TLR9) and its downstream signaling pathway via p38 kinase, causing an immunostimulatory effect on EGFR-mutated NSCLC cells. Thus, dual effects of this DNAzyme harboring the CpG site, such as TLR9 activation and EGFR downregulation, leads to apoptosis of EGFR-mutated NSCLC cells.

δ-Catenin Increases the Stability of EGFR by Decreasing c-Cbl Interaction and Enhances EGFR/Erk1/2 Signaling in Prostate Cancer

  • Shrestha, Nensi;Shrestha, Hridaya;Ryu, Taeyong;Kim, Hangun;Simkhada, Shishli;Cho, Young-Chang;Park, So-Yeon;Cho, Sayeon;Lee, Kwang-Youl;Lee, Jae-Hyuk;Kim, Kwonseop
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.320-330
    • /
    • 2018
  • ${\delta}$-Catenin, a member of the p120-catenin subfamily of armadillo proteins, reportedly increases during the late stage of prostate cancer. Our previous study demonstrates that ${\delta}$-catenin increases the stability of EGFR in prostate cancer cell lines. However, the molecular mechanism behind ${\delta}$-catenin-mediated enhanced stability of EGFR was not explored. In this study, we hypothesized that ${\delta}$-catenin enhances the protein stability of EGFR by inhibiting its lysosomal degradation that is mediated by c-casitas b-lineage lymphoma (c-Cbl), a RING domain E3 ligase. c-Cbl monoubiquitinates EGFR and thus facilitates its internalization, followed by lysosomal degradation. We observed that ${\delta}$-catenin plays a key role in EGFR stability and downstream signaling. ${\delta}$-Catenin competes with c-Cbl for EGFR binding, which results in a reduction of binding between c-Cbl and EGFR and thus decreases the ubiquitination of EGFR. This in turn increases the expression of membrane bound EGFR and enhances EGFR/Erk1/2 signaling. Our findings add a new perspective on the role of ${\delta}$-catenin in enhancing EGFR/Erk1/2 signaling-mediated prostate cancer.

c-Src Antisense Complexed with PAMAM Denderimes Decreases of c-Src Expression and EGFR-Dependent Downstream Genes in the Human HT-29 Colon Cancer Cell Line

  • Nourazarian, Ali Reza;Pashaei-Asl, Roghiyeh;Omidi, Yadollah;Najar, Ahmad Gholamhoseinian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2235-2240
    • /
    • 2012
  • c-Src is one member of non-receptor tyrosine kinase protein family that has over expression and activation in many human cancer cells. It has been shown that c-Src is implicated in various downstream signaling pathways associated with EGFR-dependent signaling such as MAPK and STAT5 pathways. Transactivation of EGFR by c-Src is more effective than EGFR ligands. To inhibit the c-Src expression, we used c-Src antisense oligonucleotide complexed with PAMAM Denderimes. The effect of c-Src antisense oligonucleotide on HT29 cell proliferation was determined by MTT assay. Then, the expression of c-Src, EGFR and the genes related to EGFR-depended signaling with P53 was applied by real time PCR. We used western blot analysis to elucidate the effect of antisense on the level of c-Src protein expression. The results showed, c-Src antisense complexed with PAMAM denderimers has an effective role in decrease of c-Src expression and EGFR-dependent downstream genes.

Dpp Represses eagle Expression at Short-Range, but Can Repress Its Expression at a Long-Range via EGFR Signal Repression

  • Kim, Se Young;Jung, Keuk Il;Kim, Sang Hee;Jeon, Sang-Hak
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.576-582
    • /
    • 2008
  • Nervous system development takes place after positional information has been established along the dorsal-ventral (D/V) axis. The initial subdivision provided by a gradient of nuclear dorsal protein is maintained by the zygotic genes expressed along the D/V axis. In this study, an investigation was conducted to determine the range of Dpp function in repressing the expression of eagle (eg) that is present in intermediate neuroblasts defective (ind) and muscle specific homeobox (msh) gene domain. eg is expressed in neuroblast (NB) 2-4, 3-3 and 6-4 of the msh domain, and NB7-3 of the ind domain at the embryonic stage 11. In decapentaplegic (dpp) loss-of-function mutant embryos, eg was ectopically expressed in the dorsal region, while in dpp gain-of-function mutants produced by sog or sca-GAL4/UAS-dpp, eg was repressed by Dpp. It is worthy of note that Dpp produced from sim;;dpp embryos showed that Dpp could function at long range. However, Dpp produced from en-GAL4/UAS-dpp or wg-GAL4/UAS-dpp primarily acted at short-range. This result demonstrated that this discrepancy seems to be due to the repression of Dpp to EGFR signaling in sim;;dpp embryos. Taken together, these results suggest that Dpp signaling works at short-range, but can function indirectly at long-range by way of repression of EGFR signaling during embryonic neurogenesis.

Radiation Response Modulation of GW572016 (EGFR/HER2 Dual Tyrosine Kinase Inhibitor) in Human Breast Cancer Xenografts (인간 유방암 세포 이식마우스에서 EGFR/HER2 복합 Tyrosine Kinase 억제제인 GW572016에 의한 방사선증진효과)

  • Kim, Yeon-Sil;Roh, Kwang-Won;Chae, Soo-Min;Mun, Seong-Kwon;Yoon, Sei-Chul;Jang, Hong-Seok;Chung, Su-Mi
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.233-241
    • /
    • 2007
  • Purpose: We examined the effect of the dual EGFR/HER2 tyrosine kinase inhibitor, GW572016, on EGFR/HER2 receptor phosphorylation, inhibition of downstream signaling and radiosensitization in either an EGFR or HER2 overexpressing human breast cancer xenograft. Materials and Methods: We established SCID mice xenografts from 4 human breast cancer cell line that overexpressed EGFR or HER 2 (SUM 102, SUM 149, SUM 185, SUM 225). Two series of xenografts were established. One series was established for determining inhibition of the EGFR/HER2 receptor and downstream signaling activities by GW572016. The other series was established for determining the radiosensitization effect of GW572016. Inhibition of the receptor and downstream signaling proteins were measured by the use of immunoprecipitation and Western blotting. For determining the in vivo radiosensitization effect of GW572016, we compared tumor growth delay curves in the following four treatment arms: a) control; b) GW572016 alone; c) radiotherapy (RT) alone; d) GW572016 and RT. Results: GW572016 inhibited EGFR, HER2 receptor phosphorylation in SUM 149 and SUM 185 xenografts. In addition, the p44/42 MAPK (ERK 1/2) downstream signaling pathway was inactivated by GW572016 in the SUM 185 xenograft. In the SUM 225 xenograft, we could not observe inhibition of HER2 receptor phosphorylation by GW572016; both p44/42 MAPK (Erk1/2) and Akt downstream signal protein phosphorylation were inhibited by GW572016. GW572016 inhibited growth of the tumor xenograft of SUM 149 and SUM 185. The combination of GW572016 and RT enhanced growth inhibition greater than that with GW572016 alone or with RT alone in the SUM 149 xenograft. GW572016 appears to act as an in vivo radiosensitizer. Conclusion: GW572016 inhibited EGFR/HER2 receptor phosphorylation and downstream signaling pathway proteins. GW572016 modestly inhibited the growth of tumor in the SUM 185 xenograft and showed radiosensitization in the SUM 149 xenograft. Our results suggest that a better predictor of radiation response would be inhibition of a crucial signaling pathway than inhibition of a receptor.

Reduced EGFR Level in eIF2α Phosphorylation-Deficient Hepatocytes Is Responsible for Susceptibility to Oxidative Stress

  • Kim, Mi-Jeong;Choi, Woo-Gyun;Ahn, Kyung-Ju;Chae, In Gyeong;Yu, Rina;Back, Sung Hoon
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.264-275
    • /
    • 2020
  • Reactive oxygen species (ROS) play a significant role in intracellular signaling and regulation, particularly when they are maintained at physiologic levels. However, excess ROS can cause cell damage and induce cell death. We recently reported that eIF2α phosphorylation protects hepatocytes from oxidative stress and liver fibrosis induced by fructose metabolism. Here, we found that hepatocyte-specific eIF2α phosphorylation-deficient mice have significantly reduced expression of the epidermal growth factor receptor (EGFR) and altered EGFR-mediated signaling pathways. EGFR-mediated signaling pathways are important for cell proliferation, differentiation, and survival in many tissues and cell types. Therefore, we studied whether the reduced amount of EGFR is responsible for the eIF2α phosphorylation-deficient hepatocytes' vulnerability to oxidative stress. ROS such as hydrogen peroxide and superoxides induce both EGFR tyrosine phosphorylation and eIF2α phosphorylation. eIF2α phosphorylation-deficient primary hepatocytes, or EGFR knockdown cells, have decreased ROS scavenging ability compared to normal cells. Therefore, these cells are particularly susceptible to oxidative stress. However, overexpression of EGFR in these eIF2α phosphorylation-deficient primary hepatocytes increased ROS scavenging ability and alleviated ROS-mediated cell death. Therefore, we hypothesize that the reduced EGFR level in eIF2α phosphorylation-deficient hepatocytes is one of critical factors responsible for their susceptibility to oxidative stress.

Histone Deacetylase-3/CAGE Axis Targets EGFR Signaling and Regulates the Response to Anti-Cancer Drugs

  • Kim, Hyuna;Kim, Youngmi;Goh, Hyeonjung;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.229-241
    • /
    • 2016
  • We have previously reported the role of miR-326-HDAC3 loop in anti-cancer drug-resistance. CAGE, a cancer/testis antigen, regulates the response to anti-cancer drug-resistance by forming a negative feedback loop with miR-200b. Studies investigating the relationship between CAGE and HDAC3 revealed that HDAC3 negatively regulated the expression of CAGE. ChIP assays demonstrated the binding of HDAC3 to the promoter sequences of CAGE. However, CAGE did not affect the expression of HDAC3. We also found that EGFR signaling regulated the expressions of HDAC3 and CAGE. Anti-cancer drug-resistant cancer cell lines show an increased expression of $pEGFR^{Y845}$. HDAC3 was found to negatively regulate the expression of $pEGFR^{Y845}$. CAGE showed an interaction and co-localization with EGFR. It was seen that miR-326, a negative regulator of HDAC3, regulated the expression of CAGE, $pEGFR^{Y845}$, and the interaction between CAGE and EGFR. miR-326 inhibitor induced the binding of HDAC3 to the promoter sequences in anti-cancer drug-resistant $Malme3M^R$ cells, decreasing the tumorigenic potential of $Malme3M^R$ cells in a manner associated with its effect on the expression of HDAC3, CAGE and $pEGFR^{Y845}$. The down-regulation of HDAC3 enhanced the tumorigenic, angiogenic and invasion potential of the anti-cancer drug-sensitive Malme3M cells in CAGE-dependent manner. Studies revealed that $PKC{\delta}$ was responsible for the increased expression of $pEGFR^{Y845}$ and CAGE in $Malme3M^R$ cells. CAGE showed an interaction with $PKC{\delta}$ in $Malme3M^R$ cells. Our results show that HDAC3-CAGE axis can be employed as a target for overcoming resistance to EGFR inhibitors.

iRhoms; Its Functions and Essential Roles

  • Lee, Min-Young;Nam, Ki-Hoan;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.109-114
    • /
    • 2016
  • In Drosophila, rhomboid proteases are active cardinal regulators of epidermal growth factor receptor (EGFR) signaling pathway. iRhom1 and iRhom2, which are inactive homologs of rhomboid intramembrane serine proteases, are lacking essential catalytic residues. These are necessary for maturation and trafficking of tumor necrosis factor-alpha (TNF-${\alpha}$) converting enzyme (TACE) from endoplasmic reticulum (ER) to plasma membrane through Golgi, and associated with the fates of various ligands for EGFR. Recent studies have clarified that the activation or downregulation of EGFR signaling pathways by alteration of iRhoms are connected to several human diseases including tylosis with esophageal cancer (TOC) which is the autosomal dominant syndrom, breast cancer, and Alzheimer's disease. Thus, this review focuses on our understanding of iRhoms and the involved mechanisms in the cellular processes.

Growth inhibition in head and neck cancer cell lines by gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (두경부암 세포주에서 상피성장인자수용체 타이로신 카이네이즈 억제제인 gefitinib의 성장억제에 관한 연구)

  • Song, Seung-Il;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.5
    • /
    • pp.287-293
    • /
    • 2009
  • Cell survival is the result of a balance between programmed cell death and cellular proliferation. Cell membrane receptors and their associated signal transducing proteins control these processes. Of the numerous receptors and signaling proteins, epidermal growth factor receptor (EGFR) is one of the most important receptors involved in signaling pathways implicated in the proliferation and survival of cancer cells. EGFR is often highly expressed in human tumors including oral squamous cell carcinomas, and there is increasing evidence that high expression of EGFR is correlated with poor clinical outcome of common human cancers. Therefore, we examined the antiproliferative activity of gefitinib, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in head and neck cancer cell lines. SCC-9, KB cells were cultured and growth inhibition activity of gefitinib was measured with MTT assay. To study influence of gefitinib in cell cycle, we performed cell cycle analysis with flow cytometry. Western blot was done to elucidate the expression of EGFR in cell lines and phosphorylation of EGFR and downstream kinase protein, Erk and Akt. Significant growth inhibition was observed in SCC-9 cells in contrast with KB cells. Also, flow cytometric analysis showed G1 phase arrest only in SCC-9 cells. In Western blot analysis for investigation of EGFR expression and downstream molecule phosphorylation, gefitinib suppressed phosphorylation of EGFR and downstream protein kinase Erk, Akt in SCC-9. However, in EGFR positive KB cells, weak expression of active form of Erk and Akt and no inhibitory activity of phosphorylation in Erk and Akt was observed. The antiproliferative activity of gefitinib was not correlated with EGFR expression and some possibility of phosphorylation of Erk and Akt as a predictive factor of gefitinib response was emerged. Further investigations on more reliable predictive factor indicating gefitinib response are awaited to be useful gefitinib treatment in head and neck cancer patients.