• 제목/요약/키워드: EGFR genes

Search Result 33, Processing Time 0.025 seconds

Dpp Represses eagle Expression at Short-Range, but Can Repress Its Expression at a Long-Range via EGFR Signal Repression

  • Kim, Se Young;Jung, Keuk Il;Kim, Sang Hee;Jeon, Sang-Hak
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.576-582
    • /
    • 2008
  • Nervous system development takes place after positional information has been established along the dorsal-ventral (D/V) axis. The initial subdivision provided by a gradient of nuclear dorsal protein is maintained by the zygotic genes expressed along the D/V axis. In this study, an investigation was conducted to determine the range of Dpp function in repressing the expression of eagle (eg) that is present in intermediate neuroblasts defective (ind) and muscle specific homeobox (msh) gene domain. eg is expressed in neuroblast (NB) 2-4, 3-3 and 6-4 of the msh domain, and NB7-3 of the ind domain at the embryonic stage 11. In decapentaplegic (dpp) loss-of-function mutant embryos, eg was ectopically expressed in the dorsal region, while in dpp gain-of-function mutants produced by sog or sca-GAL4/UAS-dpp, eg was repressed by Dpp. It is worthy of note that Dpp produced from sim;;dpp embryos showed that Dpp could function at long range. However, Dpp produced from en-GAL4/UAS-dpp or wg-GAL4/UAS-dpp primarily acted at short-range. This result demonstrated that this discrepancy seems to be due to the repression of Dpp to EGFR signaling in sim;;dpp embryos. Taken together, these results suggest that Dpp signaling works at short-range, but can function indirectly at long-range by way of repression of EGFR signaling during embryonic neurogenesis.

Evolution of the Mir-155 Family and Possible Targets in Cancers and the Immune System

  • Xie, Guang-Bing;Liu, Wei-Jia;Pan, Zhi-Jun;Cheng, Tian-Yin;Luo, Chao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7547-7552
    • /
    • 2014
  • The mir-155 family is not only involved in a diversity of cancers, but also as a regulator of the immune system. However, the evolutionary history of this family is still unclear. The present study indicates that mir-155 evolved independently with lineage-specific gain of miRNAs. In addition, arm switching has occurred in the mir-155 family, and alternative splicing could produce two different lengths of ancestral sequences, implying the alternative splicing can also drive evolution for intragenic miRNAs. Here we screened validated target genes and immunity-related proteins, followed by analyzation of the mir-155 family function by high-throughput methods like the gene ontology (GO) and Kyoto Eneyclopedin of Genes and Genemes (KEGG) pathway enrichment analysis. The high-throughput analysis showed that the CCND1 and EGFR genes were outstanding in being significantly enriched, and the target genes cebpb and VCAM1 and the protein SMAD2 were also vital in mir-155-related immune reponse activities. Therefore, we conclude that the mir-155 family is highly conserved in evolution, and CCND1 and EGFR genes might be potential targets of mir-155 with regard to progress of cancers, while the cebpb and VCAM1 genes and the protein SMAD2 might be key factors in the mir-155 regulated immune activities.

Ganglioside GD1a Activates the Phosphorylation of EGFR in Porcine Oocytes Maturation in vitro

  • Park, Hyo-Jin;Kim, Jin-Woo;Park, Jae-Young;Yang, Seul-Gi;Jung, Jae-Min;Kim, Min-Ji;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.32 no.1
    • /
    • pp.17-24
    • /
    • 2017
  • Ganglioside GD1a is specifically formed by the addition of sialic acid to ganglioside GM1a by ST3 ${\beta}$-galactoside ${\alpha}$-2,3-sialyltransferase 2 (ST3GAL2). Above all, GD1a are known to be related with the functional regulation of several growth factor receptors, including activation and dimerization of epidermal growth factor receptor (EGFR) in tumor cells. The activity of EGF and EGFR is known to be a very important factor for meiotic and cytoplasmic maturation during in vitro maturation (IVM) of mammalian oocytes. However, the role of gangliosides GD1a for EGFR-related signaling pathways in porcine oocyte is not yet clearly understood. Here, we investigated that the effect of ST3GAL2 as synthesizing enzyme GD1a for EGFR activation and phosphorylation during meiotic maturation. To investigate the expression of ST3GAL2 according to the EGF treatment (0, 10 and 50 ng/ml), we observed the patterns of ST3GAL2 genes expression by immunofluorescence staining in denuded oocyte (DO) and cumulus cell-oocyte-complex (COC) during IVM process (22 and 44 h), respectively. Expression levels of ST3GAL2 significantly decreased (p<0.01) in an EGF concentration (10 and 50 ng/ml) dependent manner. And fluorescence expression of ST3GAL2 increased (p<0.01) in the matured COCs for 44 h. Under high EGF concentration (50 ng/ml), ST3GAL2 protein levels was decreased (p<0.01), and their shown opposite expression pattern of phosphorylation-EGFR in COCs of 44 h. Phosphorylation of EGFR significantly increased (p<0.01) in matured COCs treated with GD1a for 44 h. In addition, ST3GAL2 protein levels significantly decreased (p<0.01) in GD1a ($10{\mu}M$) treated COCs without reference to EGF pre-treatment. These results suggest that treatment of exogenous ganglioside GD1a may play an important role such as EGF in EGFR-related activation and phosphorylation in porcine oocyte maturation of in vitro.

The antitumor activities of Acanthopanax senticosus Harms(ASH) in human gastric cancer AGS cell lines (가시오가피 에탄올추출물의 AGS위암세포주에서 세포주기억제효과)

  • Lee, Sun-Dong;Ko, Seong-Gyu;Shin, Heon-Tae;Shin, Yong-Cheol
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.15 no.3
    • /
    • pp.127-140
    • /
    • 2011
  • Objectives : The research was conducted to confirm the effect of Acanthopanax senticosus harms(ASH) on the anti-tumor activities in AGS human gastric cancer cells. Methods : To examine the potential anti-tumor effect of ASH, we performed many experiments. After processing AGS cancer cells with varying concentrations 80% ethanol ASH extract, analyses by MTT, flow cytometer(FACS) and western blot were used. Results : AGS cancer cells showed decreased cell proliferation and increased contents of S phase when treated with ASH. Moreover, the Western blot experiment showed that ASH affected S phase cell cycle-related molecules(Cyclin A, p21 and p16) in AGS cells. ASH also inhibited EGFR-STAT3 pathway in AGS human gastric cancer cells. Conclusion : Based on these results, we observed that ASH arrested the cell cycle at S phase and inhibited the phosphorylation of EGFR and STAT3 proteins which reduce the cell cycle and the manifestation of the genes that are related to inhibiting cell growth in AGS cells. It can be concluded that ASH can be used in developing medicine for gastric cancer.

Mechanisms of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance and Strategies to Overcome Resistance in Lung Adenocarcinoma

  • Chang, Yoon Soo;Choi, Chang-Min;Lee, Jae Cheol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.4
    • /
    • pp.248-256
    • /
    • 2016
  • Somatic mutations that lead to hyperactivation of epidermal growth factor receptor (EGFR) signaling are detected in approximately 50% of lung adenocarcinoma in people from the Far East population and tyrosine kinase inhibitors are now the standard first line treatment for advanced disease. They have led to a doubling of progression-free survival and an increase in overall survival by more than 2 years. However, emergence of resistant clones has become the primary cause for treatment failure, and has created a new challenge in the daily management of patients with EGFR mutations. Identification of mechanisms leading to inhibitor resistance has led to new therapeutic modalities, some of which have now been adapted for patients with unsuccessful tyrosine kinase inhibitor treatment. In this review, we describe mechanisms of tyrosine kinase inhibitor resistance and the available strategies to overcoming resistance.

Network Pharmacology Analysis and Efficacy Prediction of GunryeongTang Constituents in Diabetic Complications (당뇨 합병증과 군령탕 구성성분의 네트워크 약리학 분석 및 효능 예측)

  • Jung Joo Yoon;Hye Yoom Kim;Ai Lin Tai;Ho Sub Lee;Dae Gill Kang
    • Herbal Formula Science
    • /
    • v.32 no.1
    • /
    • pp.11-28
    • /
    • 2024
  • Objectives : GunRyeong-Tang(GRT) is a traditional herbal prescription that combines Oryeongsan and Sagunja-tang. This study employed network analysis methods on the components of GRT and target genes related to diabetes complications to predict the improvement effects of GRT on diabetes complications. Methods : The collection of active compounds of GRT and related target genes involved the utilization of public databases and the PubChem database. We selected diabetes complication-related genes using GeneCards and confirmed their correlation through comparative analysis with the target genes of GRT. We constructed a network using Cytoscape 3.9.1 and conducted topological analysis. To predict the mechanism, we performed functional enrichment analysis based on Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results : Through network analysis, 234 active compounds and 1361 related genes were collected from GRT. A total of 9,136 genes related to diabetes complications were collected, and 1,039 target genes overlapping with the components of GRT were identified. The core genes of this network were TP53, INS, AKT1, ALB, and EGFR. In addition, GRT significantly reduced the H9c2 cell size and the expression of myocardial hypertrophy biomarkers (ANP, BNP), which were increased by high glucose (HG). Conclusions : Through this study, we were able to predict the activity and mechanism of action of GRT on diabetes and diabetic complications, and confirmed the potential of GRT as a treatment for diabetes complications through the effect of GRT on improving myocardial hypertrophy for diabetic cardiomyopathy.

Network Pharmacological Analysis of Cnidii Fructus Treatment for Gastritis (벌사상자의 위염 치료 적용에 대한 네트워크 약리학적 분석)

  • Young-Sik Kim;Seungho Lee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.22-26
    • /
    • 2024
  • The purpose of this study was to identify the applicability, main compounds, and target genes of Cnidii Fructus (CF) in the treatment of gastritis using network pharmacology. The compounds in CF were searched in Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and a database of medicinal materials and chemical compounds in Northeast Asian traditional medicine (TM-MC). The target gene information of the compounds was collected from pubchem and cross-compared with the gastritis-related target gene information collected from Genecard to derive the target genes. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on the derived target genes. Afterwards, network analysis between compounds and disease target genes was performed using cytoscape. We identified 121 active compounds and 139 target genes associated with gastritis. Pathways derived from the GO biological process and KEGG pathway DB primarily focus on target genes related to inflammation (IL-6, IL-8, TNF production, NF-κB transcription factor activity, and NF-κB signaling pathway) and cell death (PI3K-Akt, FoxO). Major targets for CF treatment of gastritis include TP53, TNF, BCL2, EGFR, NFKB1, ABCB1, PPARG, PTGS2, IL6, IL1B, and SOD1, along with major compounds such as coumarin, osthol, hexadecanoic acid, oleic acid, linoleic acid, and stigmasterol. This study provided CF's applicability for gastritis, related compounds, and target information. Evaluating CF's effectiveness in a preclinical gastritis model suggests its potential use in clinical practice for digestive system diseases.

Lung Adenocarcinoma Mutation Hotspot in Koreans: Oncogenic Mutation Potential of the TP53 P72R Single Nucleotide Polymorphism (한국인의 폐선암 돌연변이 핫스팟: TP53 P72R Single Nucleotide Polymorphism의 발암성 돌연변이 가능성)

  • Jae Ha BAEK;Kyu Bong CHO
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.2
    • /
    • pp.93-104
    • /
    • 2023
  • This study aimed to identify new markers that cause lung adenocarcinoma by analyzing mutation hotspots for the top five genes with high mutation frequency in lung adenocarcinoma in Koreans by next generation sequencing (NGS) analysis. The association between TP53 mutation types and patterns with smoking, a major cause of lung cancer, was examined. The clinicopathological characteristics of lung adenocarcinoma patients with TP53 P72R SNPs were analyzed. In Korean lung adenocarcinoma cases, regardless of the smoking status, the TP53 P72R SNP was the most frequently occurring mutational hotspot, in which the nucleotide base was transversed from C to G, and the amino acid was substituted from proline to arginine at codon 72 of TP53. An analysis of the clinicopathological characteristics of lung adenocarcinoma cases with TP53 P72R SNP revealed no significant correlation with the patient's age, gender, smoking status, and tumor differentiation, but a significant correlation with low stage (P-value =0.026). This study confirmed an increase in TP53 rather than EGFR, which was reported as the most frequent mutations in lung adenocarcinoma in Koreans through NGS. Among them, TP53 P72R SNP is the most frequent regardless of smoking status.

Screening of Genetic Variations in Korean Native Duck using Next-Generation Resequencing Data

  • Eunjin Cho;Minjun Kim;Hyo Jun Choo;Jun Heon Lee
    • Korean Journal of Poultry Science
    • /
    • v.50 no.3
    • /
    • pp.187-191
    • /
    • 2023
  • Korean native ducks (KNDs) continue to have a high preference from consumers due to their excellent meat quality and taste characteristics. However, due to low productivity and fixed plumage color phenotype, it could not secure a large share in the domestic market compared to imported species. In order to improve the market share of KNDs, the genetic characteristics of the breed should be identified and used for improvement and selection. Therefore, this study was conducted to identify the genetic information of colored and white KNDs using next-generation resequencing data and screening for differences between the two groups. As a result of the analysis, the genetic variants that showed significant differences between the colored and white KND groups were mainly identified as mutations related to tyrosine activity. The variants were located in the genes that affect melanin synthesis and regulation, such as EGFR, PDGFRA, and DDR2, and these were reported as the candidate genes related to plumage pigmentation in poultry. Therefore, the results of this study are expected to be useful as a basis for understanding and utilizing the genetic characteristics of KNDs for genetic improvement and selection of white broiler KNDs.

Identifying Differentially Expressed Genes and Screening Small Molecule Drugs for Lapatinib-resistance of Breast Cancer by a Bioinformatics Strategy

  • Zhuo, Wen-Lei;Zhang, Liang;Xie, Qi-Chao;Zhu, Bo;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10847-10853
    • /
    • 2015
  • Background: Lapatinib, a dual tyrosine kinase inhibitor that interrupts the epidermal growth factor receptor (EGFR) and HER2/neu pathways, has been indicated to have significant efficacy in treating HER2-positive breast cancer. However, acquired drug resistance has become a very serious clinical problem that hampers the use of this agent. In this study, we aimed to screen small molecule drugs that might reverse lapatinib-resistance of breast cancer by exploring differentially expressed genes (DEGs) via a bioinformatics method. Materials and Methods: We downloaded the gene expression profile of BT474-J4 (acquired lapatinib-resistant) and BT474 (lapatinib-sensitive) cell lines from the Gene Expression Omnibus (GEO) database and selected differentially expressed genes (DEGs) using dChip software. Then, gene ontology and pathway enrichment analyses were performed with the DAVID database. Finally, a connectivity map was utilized for predicting potential chemicals that reverse lapatinib-resistance. Results: A total of 1, 657 DEGs were obtained. These DEGs were enriched in 10 pathways, including cell cycling, regulation of actin cytoskeleton and focal adhesion associate examples. In addition, several small molecules were screened as the potential therapeutic agents capable of overcoming lapatinib-resistance. Conclusions: The results of our analysis provided a novel strategy for investigating the mechanism of lapatinib-resistance and identifying potential small molecule drugs for breast cancer treatment.