• Title/Summary/Keyword: EGFP protein

Search Result 133, Processing Time 0.028 seconds

Vp28 of Shrimp White Spot Syndrome Virus Is Involved in the Attachment and Penetration into Shrimp Cells

  • Yi, Guohua;Wang, Zhimin;Qi, Yipeng;Yao, Lunguang;Qian, Juan;Hu, Longbo
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.726-734
    • /
    • 2004
  • White spot disease (WSD) is caused by the white spot syndrome virus (WSSV), which results in devastating losses to the shrimp farming industry around the world. However, the mechanism of virus entry and spread into the shrimp cells is unknown. A binding assay in vitro demonstrated VP28-EGFP (envelope protein VP28 fused with enhanced green fluorescence protein) binding to shrimp cells. This provides direct evidence that VP28-EGFP can bind to shrimp cells at pH 6.0 within 0.5 h. However, the protein was observed to enter the cytoplasm 3 h post-adsorption. Meanwhile, the plaque inhibition test showed that the polyclonal antibody against VP28 (a major envelope protein of WSSV) could neutralize the WSSV and block an infection with the virus. The result of competition ELISA further confirmed that the envelope protein VP28 could compete with WSSV to bind to shrimp cells. Overall, VP28 of the WSSV can bind to shrimp cells as an attachment protein, and can help the virus enter the cytoplasm.

Construction and Expression Analysis of Knock-in Vector for EGFP Expression in the Porcine $\beta$-Casein Gene Locus (돼지 $\beta$-Casein을 이용한 EGFP 발현 Knock-in 벡터의 구축 및 발현 검증)

  • Lee, Sang-Mi;Kim, Hey-Min;Moon, Seung-Ju;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.32 no.3
    • /
    • pp.205-209
    • /
    • 2008
  • This study was carried out to develop knock-in vector for EGFP (enhanced green fluorescent protein) expression in porcine $\beta$-casein locus. For construction of knock-in vector using porcine $\beta$-casein gene, we cloned the $\beta$-casein genome DNA from porcine fetal fibroblast cells, EGFP and SV40 polyA signal using PCR. The knock-in vectors consisted of a 5-kb fragment as the 5' recombination arm and a 2.7-kb fragment as the 3' recombination arm. We used the neomycin resistance gene ($neo^{r}$) as a positive selectable marker and the diphtheria toxin A (DT-A) gene as a negative selectable marker. To demonstrate EGFP expression from knock-in vector, we are transfected knock-in vector that has EGFP gene in murine mammary epithelial cell line HC11 cells with pSV2 neo plasmid. The EGFP expression was detected in HC11 cells transfected knock-in vector. This result demonstrates that this knock-in vector may be used for the development of knock-in transgenic pig.

Production of Transgenic Bovine Embryos Following Nuclear Transfer of Bovine Fetal Fibroblasts Transfected by Foreign Genes (외래유전자를 도입한 소 태아세포의 핵치환에 의한 형질전환 소 수정란 생산)

  • Kil, K.S.;Uhm, S.J.;Kim, E.H.;Chung, H.J.;Kim, T.;Park, H.;Lee, H.T.;Chung, K.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.429-437
    • /
    • 2000
  • This study investigated the successful introduction of genes of erythropoietin (EPO) and enhanced green fluorescent protein (EGFP) in bovine embryos following nuclear transfer of bovine fetal fibroblasts (bFF), which were transfected by retrovirus vector system. Non-starved bFF were, transferred into perivitelline space of enucleated oocytes. The bFF-oocyte units were accomplished by cell to cell fusion and activated with calcium inophore and 6-dimethylaminopurine. Reconstructed embryos were co-cultured with bovine oviduct epithelial cells in CRlaa medium for 8 days. Out of 187 (EPO) and 210 (EGFP) bovine eggs reconstructed by nuclear transfer, 149 (EPO : 80.0%) and 158 (EGFP : 75.2%) embryos were cleaved, and among them 36 (EPO : 24.2%) and 35 (EGFP : 22.2%) embryos developed to the blastocyst stage. Of these blastocysts, 100% integration of EPO gene in 36 embryos was determined by PCR, and 100% expression of EGFP gene in 35 embryos was observed under the fluorescent microscope. This result indicates that bovine oocytes reconstructed by nuclear transfer of transfected bFF can successfully develop to the blastocyst stage. Furthermore, this novel procedure may be presumably an attractive method efficiently to produce the transgenic cattles.

  • PDF

Comparison of Recombinant Baculovirus Vector Systems and Control Vector System (재조합 베큘로바이러스벡터와 대조 벡터의 비교)

  • Kim, Ji-Young;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.954-957
    • /
    • 2015
  • A recombinant baculovirus vector systems were composed of genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD). These recombinant baculovirus vector system were transfected into various cell lines and tissues and confirmed gene transfer and expression of these vector systems with only control vector system. From the result, gene transfer and gene expression of recombinant baculovirus vector systems were superior in terms of efficacy and safety than in the control vector system.

  • PDF

Interaction of Heliothis armigera Nuclear Polyhedrosis Viral Capsid Protein with its Host Actin

  • Lu, Song-Ya;Qi, Yi-Peng;Ge, Guo-Qiong
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.562-567
    • /
    • 2002
  • In order to find the cellular interaction factors of the Heliothis armigera nuclear polyhedrosis virus capsid protein VP39, a Heliothis armigera cell cDNA library was constructed. Then VP39 was used as bait. The host actin gene was isolated from the cDNA library with the yeast two-hybrid system. This demonstrated that VP39 could interact with its host actin in yeast. In order to corroborate this interaction in vivo, the vp39 gene was fused with the green fluorescent protein gene in plasmid pEGFP39. The fusion protein was expressed in the Hz-AM1 cells under the control of the Autographa californica multiple nucleopolyhedrovirus immediate early gene promoter. The host actin was labeled specifically by the red fluorescence substance, tetramethy rhodamine isothicyanete-phalloidin. Observation under a fluorescence microscopy showed that VP39, which was indicated by green fluorescence, began to appear in the cells 6 h after being transfected with pEGFP39. Red actin cables were also formed in the cytoplasm at the same time. Actin was aggregated in the nucleus 9 h after the transfection. The green and red fluorescence always appeared in the same location of the cells, which demonstrated that VP39 could combine with the host actin. Such a combination would result in the actin skeleton rearrangement.

Gene Transfer and Gene Expression of Novel Recombinant Baculovirus Vector System (새로운 재조합 베큘로바이러스벡터의 유전자전이와 유전자발현)

  • Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.946-948
    • /
    • 2013
  • Several baculovirus vector systems recombined with coding genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD) were constructed. These recombinant baculovirus vector systems were applied into human foreskin fibroblast cells and compared the effects of gene transfer and gene expression of these recombinant baculovirus vector systems with control vector system. From this study, it showed that these novel recombinant baculovirus vector systems were superior efficacy to control vector system in view of gene transfer and gene expression.

  • PDF

Gene Transfer and Expression of Newly Reconstructed Baculovirus Vectors (재조성된 베큘로바이러스 벡터의 유전자 전이와 발현)

  • Kim, Ji-Young;Kim, Hyun Joo;Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.923-926
    • /
    • 2016
  • Baculovirus vectors were reconstructed using cytomegalovirus (CMV) promoter, polyhedron promoter, vesicular stomatitis virus G (VSVG), enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD) genes. These reconstructed vector was transfected into various cell lines and tissues. We compared this reconstructed vector with other control vectors in view of gene transfer and gene expression. In conclusion, we confirmed that gene transfer and expression of these reconstructed vectors was higher efficient than any other control vector.

  • PDF

Efficacy of Gene Transfer and Expression of Recombinanat Baculovirus Vector System (재조합 베큘로바이러스벡터의 유전자전달과 발현의 효과)

  • Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.813-815
    • /
    • 2014
  • Novel baculovirus vector systems including genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD) were constructed. These recombinant baculovirus vector systems were transfected into diverse cells of 293T, HepG2, HFF, and Hur7 cells and compared the effects of gene transfer and expression of these vector systems with control vector. From the result, we confirmed that these recombinant baculovirus vector systems were more excellent than control vector in efficacy of gene transfer and expression.

  • PDF

A Novel Role of Classical Swine Fever Virus Erns Glycoprotein in Counteracting the Newcastle Disease Virus (NDV)-mediated IFN-β Induction

  • Xia, Yan-Hua;Chen, Liu;Pan, Zi-Shu;Zhang, Chu-Yu
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.611-616
    • /
    • 2007
  • $E^{rns}$ is an envelope glycoprotein of classical swine fever virus (CSFV) and has an unusual feature of RNase activity. In the present study, we demonstrate that $E^{rns}$ counteracts Newcastle disease virus (NDV)-mediated induction of IFN-$\beta$. For this purpose, $E^{rns}$ fused to the enhanced green fluorescent protein (EGFP) was transiently expressed in porcine kidney 15 (PK15) cells. In luciferase activity assay, $E^{rns}$-EGFP was found to prevent IFN-$\beta$ promoter-driven luciferase expression and block the induction of IFN-$\beta$ promoter mediated by NDV in a dose-dependent manner. Through IFN-specific semi-quantitative RT-PCR detection, obvious decrease of IFN-$\beta$ mRNA in NDV-infected PK15 cells was observed in the presence of $E^{rns}$-EGFP. In contrast, EGFP alone showed none of this block capacity. In addition, $E^{rns}$-EGFP mutations with RNase inactivation were also found to block NDV-mediated induction of IFN-$\beta$. These evidences establish a novel function for CSFV $E^{rns}$ glycoprotein in counteraction of the IFN-$\beta$ induction pathway.

A Novel Possibility of Recombinant Baculovirus Vector (재조합 베큘로바이러스 벡터의 새로운 가능성)

  • Kim, Ji-Young;Kim, Hyun Joo;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.838-841
    • /
    • 2015
  • Recombinant baculovirus vector is composed of genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD). This recombinant baculovirus vector was transfected into cell lines and tissues and then found out a novel possibility in view of gene transfer and gene expression in comparison to other vector systems. Efficacy of gene transfer and gene expression of this recombinant baculovirus vector was higher than any other vector system.

  • PDF