• Title/Summary/Keyword: EFDC Model

Search Result 118, Processing Time 0.02 seconds

Study on the Temporal and Spatial Variations of Salinity by Freshwater Discharge in Gyeonggi Bay (경기만내 담수 유입으로 인한 시·공간적인 염분변화에 대한 연구)

  • Jeong, Jeong Ho;Kim, Kuk Jin;Yang, Keun Ho;Chang, Yoon Young;Park, Sun Hwan;Kim, Young Taeg
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.6
    • /
    • pp.421-432
    • /
    • 2007
  • To investigate temporal and spatial variations of hydrodynamics and environmental conditions in Gyeonggi Bay, including Han River estuary, numerical experiments were performed using 3-dimensional fine grid numerical ocean model. The model successfully reproduced the physical phenomena already known in Gyeonggi Bay where tide and fresh water discharge are dominant forcings. The calculated harmonic constants of tide and tidal current agreed well with those of observations at nine tide stations and two tidal current stations. Tidal asymmetries along the Yeomha Waterway, mainly caused by non-linear effect, were well reproduced and agreed well with observations. Time series of salinity at four stations(A, B, C and D) and horizontal distributions of monthly averaged salinity show that Gyodong and Seokmo Waterways play an important role in fresh water discharge into the Gyeonggi Bay rather than Yeomha Waterway.

Prediction of water quality change in Saemangeum reservoir by floodgate operation at upstream (상류제수문 방류조건에 따른 새만금호의 수질변화 예측)

  • Kim, Se Min;Park, Young Ki;Lee, Dong Joo;Chung, Mahn
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.373-386
    • /
    • 2017
  • This study simulated water quality item and flow rate of subbasin for Saemangeum watershed using Soil and Water Assessment Tool (SWAT) model and Environmental Fluid Dynamics Code (EFDC) model which simulate hydraulic and water quality in three-dimensions. The simulated values corresponded to observed value well. The result of simulation for floodgate operations at the M3 and M5 points, it exceeds water quality standard and at the M3 and D3 points, change of range for concentration is too wide, and upstream of Saemangeum reservoir is sensitive to inflow flow rate. Compared to the annual average concentration for observed station according to the discharge conditions, improvement of water quality for upstream was apparently compared to the downstream. Range of influence for change of water quality presented that maximum discharge condition, the influence range is 22 km in the direction of the Saemangeum downstream from the Mankyung bridge, and 15 km in the downstream direction of saemangeum in the Dongjin bridge. This study result demonstrated that floodgate operating at upstream has significant influence on water quality management of Saemangeum reservoir and it needs to be considered in plans of water quality management for Floodgate operation on Saemangeum reservoir.

Analysis of influence on water quality and harmful algal blooms due to weir gate control in the Nakdong River, Geum River, and Yeongsan River (낙동강, 금강 및 영산강 가동보 운영이 수질 및 녹조현상에 미치는 영향 분석)

  • Seo, Dongil;Kim, Jaeyoung;Kim, Jinsoo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.877-887
    • /
    • 2020
  • A 3-Dimensional hydrodynamic and water quality model was applied to evaluate the effects of weir gate operations on water quality and harmful algal bloom (HAB) occurrences at selected locations in the Nakdong River, Geum River, and Yeongsan River. For the Geum River and Yeongsan River, when the gates are left open, annual and summer Chl-a and HABs were decreased at upstream locations, Sejong Weir and Seungchon Weir, but summer average concentrations of Chl-a and HABs were increased at downstream locations, Baekje Weir and Juksan Weir. For the open scenario, the reduced hydraulic residence time in the upper stream areas of the Geum River and Yeongsan River would allow less available time for nutrient consumption that would result in higher dissolved inorganic phosphorus concentrations followed by higher algal growth in the downstream areas. However, in the case of the Nakdong River, both annual and summer Chl-a and HABs were increased in all locations for the open scenario. This condition seems to be resulted in due to increased light availability by reduced water depths. Changes in Chl-a and HABs occurrences due to the water gate control in the study sites are different due to differences in physical, chemical, and biological conditions in each location.

Three-dimensional Algal Dynamics Modeling Study in Lake Euiam Based on Limited Monitoring Data (제한된 측정 자료 기반 의암호 3차원 조류 예측 모델링 연구)

  • Choi, Jungkyu;Min, Joong-Hyuk;Kim, Deok-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.181-195
    • /
    • 2015
  • Algal blooms in lakes are one of major environmental issues in Korea. A three-dimensional, hydrodynamic and water quality model was developed and tested in Lake Euiam to assess the performance and limitations of numerical modeling with multiple algal groups using field data commonly collected for algal management. In this study, EFDC was adopted as the basic model framework. Simulated vertical profiles of water temperature, dissolved oxygen and nutrients monitored at five water quality monitoring stations from March to October 2013, which are closely related to algal dynamics simulation, showed good agreement with those of observed data. The overall spatio-temporal variations of three algal groups were reasonably simulated against the chlorophyll-a levels of those estimated from the limited monitoring data (chlorophyll-a level and cell numbers of algal species) with the RMSEs ranging from 2.6 to $17.5mg/m^3$. Also, note that $PO_4-P$ level in the water column was a key limiting factor controlling the growth of three algal groups during most of simulation period. However, the algal modeling results were not fully attainable to the levels of observation during short periods of time showing abrupt increase in algae throughout the lake. In particular, the green algae/cyanobacteria and diatom simulations were underestimated in late June to early July and early October, respectively. The results shows that better understanding of internal algal processes, neglected in most algal modeling studies, is necessary to predict the sudden algal blooms more accurately because the concentrations of external $PO_4-P$ and specific algal groups originated from the tributaries (mainly, dam water releases) during the periods were too low to fully capture the sharp rise of internal algal levels. In this respect, this study suggests that future modeling efforts should be focused on the quantification of internal cycling processes including vertical movement of algal species with respect to changes in environmental conditions to enhance the modeling performance on complex algal dynamics.

Simulations of the Effect of Flow Control and Phosphate Loading on the Reduction of Algae Biomass in Gangjeong-Goryong Weir (유량 조절과 인 부하 변동에 따른 강정고령보 조류저감 효과 수치 모의)

  • Park, Dae-Yeon;Kim, Sung-Jin;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.507-524
    • /
    • 2019
  • The purpose of this study was to validate the EFDC model for the weir pool of Gangjeong-Goryong Weir located in Nakdong River, and evaluate the effect of flow control and phosphate loading reduction on the water quality and algae biomass by group (Diatom, Green, Cyanobacteria). As a result of model validation using 2018 experimental data,the time series of water level and vertical distribution of water temperature, DO, organic matter, nitrogen, and phosphorus time series were properly simulated. Seasonal fluctuations of algae biomass by group were adequately reproduced, but the deviations between measured and simulated values were significant in some periods. As a result of scenario simulations to control the water level and flow rate, the thermal stratification was resolved as the water level was lowered and the flow rate increased. The flow velocity at which the water temperature stratification was resolved was about 0.1 m/s, which is consistent with the previous study results of Baekje Weir in Geum River. Simulations of the 2Q flow scenario showed that Chl-a decreased by 8.7% and the cell density of diatom and green algae declined. The cell density of cyanobacteria increased, however, because the high concentrations of cyanobacteria in the upstream boundary conditions directly affected downstream due to increased flow velocity. In the scenario simulation of reducing the influent phosphate load concentration (average 0.056 mg/L) to 50%, Chl-a decreased by 13.6%.The results suggest that the upstream algae concentration and phosphorus load reduction should be considered simultaneously with hydraulic control to prevent algal overgrowth of Gangjeong-Goryong Weir.

Mixing Analysis of Floating Pollutant Using Lagrangian Particle Tracking Model (Lagrangian 입자추적모형을 이용한 부유성 오염물질의 혼합해석)

  • Seo, Il Won;Park, Inhwan;Kim, Young Do;Han, Eun Jin;Choo, Min Ho;Mun, Hyun Saing
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.383-392
    • /
    • 2013
  • In this research, mixing behavior of the floating pollutant such as oil spill accidents was analyzed by studying the advection-diffusion of GPS floaters at water surface. The LPT (Lagrangian Particle Tracking) model of EFDC (Environmental Fluid Dynamics Computer Code) was used to simulate the motion of the GPS floater tracer. In the field experiment, 35 GPS floaters were injected at the Samun Bridge of Nakdong River. GPS floaters traveled to downstream about 700 m for 90 minutes. The field data by the GPS floater experiments were compared with the simulation in order to calibrate the parameter of LPT model. The turbulent diffusion coefficient of LPT model was determined as $K_H/hu^*$ = 0.17 from the scatter diagram. The arrival time of peak concentration and transverse diffusion from the simulation results were similar with the experiments from the concentration curves. Numerical experiments for anticipation of damage from floating pollutant were conducted in the same reach of the Nakdong River and the results show that the pollutant cloud transported to the left bank where the Hwawon pumping station is located. For this reason, it is suggested that the proper action should be needed to maintain the safety of the water withdrawal at the Hwawon pumping station.

A Study on integrated water management system based on Web maps

  • Choi, Ho Sung;Jung, Jin Young;Park, Koo Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.8
    • /
    • pp.57-64
    • /
    • 2016
  • Initial prevention activities and rapid propagation conditions is the most important to prevent diffusion of water pollution. If water pollutants flow into streams river or main stresm located in environmental conservation area or water intake facilities, we must predict immediately arrival time and the diffusion concentration to the proactive. National Institute of Environmental Research developed water pollution incident response prediction system linking dam and movable weir. the system is mathematical model which is updated daily. Therefore it can quickly predict the arrival time and the diffusion concentration when there are accident of oil spills and hazardous chemicals. Also we equipped with mathematical model and toxicity model of EFDC(Environmental Fluid Dynamics Code) to calculate the arrival time and the diffusion concentration. However these systems offer the services of an offline manner than real-time control services. we have ensured the reliability of data collection and have developed a real-time water quality measurement data transmission device by using the data linkage utilizing a mode bus communication and a commercial SCADA system, in particular, we implemented to be able to do real-time water quality prediction through information infrastructure of the water quality integrated management business created by utilizing the construction of the real-time prediction system that utilizes the data collected, the Open map, the visual representation using charts API and development of integrated management system development based on web maps.

Assessment of Estuary Reservoir Water Quality According to Upstream Pollutant Management Using Watershed-Reservoir Linkage Model (유역-호소 연계모형을 이용한 상류 오염원 관리에 따른 담수호 수질영향평가)

  • Kim, Seokhyeon;Hwang, Soonho;Kim, Sinae;Lee, Hyunji;Jun, Sang Min;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.1-12
    • /
    • 2022
  • Estuary reservoirs were artificial reservoir with seawalls built at the exit points of rivers. Although many water resources can be saved, it is difficult to manage due to the large influx of pollutants. To manage this, it is necessary to analyze watersheds and reservoirs through accurate modeling. Therefore, in this study, we linked the Hydrological Simulation Program-FORTRAN (HSPF), Environmental Fluid Dynamics Code (EFDC), and Water quality Analysis Simulation Program (WASP) models to simulate the hydrology and water quality of the watershed and the water level and quality of estuary lakes. As a result of applying the linked model in stream, R2 0.7 or more was satisfied for the watershed runoff except for one point. In addition, the water quality satisfies all within 15% of PBIAS. In reservoir, R2 0.72 was satisfied for water level and the water quality was within 15% of T-N and T-P. Through the modeling system, We applied upstream pollutant management scenarios to analyze changes in water quality in estuary reservoirs. Three pollution source management were applied as scenarios, the improvement of effluent water quality from the sewage treatment plant and the livestock waste treatment plant was effective in improving the quality of the reservoir water, while the artificial wetland had little effect. Water quality improvement was confirmed as a measure against upstream pollutants, but it was insufficient to achieve agricultural water quality, so additional reservoir management is required.

A study on the validation of hydraulic model using lagrangian GPS floater (Lagrangian 전자부자를 이용한 수리모델 검증 방안 연구)

  • Lee, Ho Soo;Lee, Jeong Min;Han, Eun Jin;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1047-1055
    • /
    • 2019
  • Various types of numerical modeling techniques are used to predict the behavior of pollutants under various water environmental conditions in the event of a water pollutant accident. Among them, a hydraulic model that can consider water flow characteristics is the most basic and very important. The process of evaluating whether the hydraulic model accurately predicts the applied river characteristics is very important. In the verification of the modeling result, the measuring data are often used in the river. Currently, ADCP and FlowTrackers are widely used to measure the flow velocity of rivers. However, ADCP is not accurate when the depth is less than 0.6 m and also when the ratio of irreversibility near the surface is more than 40%. Futhermore, FlowTracker has a limitation in measuring at high depth and high velocity due to the direct measurement method in rivers. Simuation results, which are validated by these methods, are not reliable for low depth conditions of low flowrate and high velocity conditions of high flowrate. In this study, Lagrangian GPS floaters which measures physical quantity of water according to particle movement is used without the conventional method measured by Eulerian technique. The verification method of the model results was studied by comparing the simulation results of the hydraulic model with the velocities measured using the GPS floaters. When comparing the traveling distance of the GPS floaters with the traveling distance of the LPT simulations, the average error rate was 13.6% on distances, and the average error rate was 3.2% on velocities except for the stagnant section. Therefore, GPS floaters can be used for a correction and verification method of hydraulic model simulations.

A Study on Temporal-Spatial Water Exchange Characteristics in Gamak Bay using a Method for Calculating Residence Time and Flushing Time (체류시간과 교체시간 계산을 통한 가막만의 시·공간적 해수교환 특성 연구)

  • Kim, Jin Ho;Lee, Won Chan;Hong, Sok Jin;Park, Jung Hyun;Kim, Chung Sook;Jung, Woo Sung;Kim, Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1087-1095
    • /
    • 2016
  • The concepts of residence time and flushing time can be used to explain the exchange and transport of water or materials in a coastal sea. The application of these transport time scales are widespread in biological, hydrological, and geochemical studies. The water quality of the system crucially depends on the residence time and flushing time of a particle in the system. In this study, the residence and flushing time in Gamak Bay were calculated using the numerical model, EFDC, which includes a particle tracking module. The average residence time was 55 days in the inner bay, and the flushing time for Gamak Bay was about 44.8 days, according to the simulation. This means that it takes about 2 months for land and aquaculture generated particles to be transported out of Gamak Bay, which can lead to substances accumulating in the bay. These results show the relationships between the transport time scale and physical the properties of the embayment. The findings of this study will improves understanding of the water and material transport processes in Gamak Bay and will be important when assessing the potential impact of coastal development on water quality conditions.