Browse > Article
http://dx.doi.org/10.5229/JECST.2012.3.3.116

A Carbon Nanotubes-Silicon Nanoparticles Network for High Performance Lithium Rechargeable Battery Anodes  

Kim, Byung Gon (Graduate School of EEWS (WCU) and KAIST Institute NanoCentury, Korea Advanced Institute of Science and Technology (KAIST))
Shin, Weon Ho (Graduate School of EEWS (WCU) and KAIST Institute NanoCentury, Korea Advanced Institute of Science and Technology (KAIST))
Lim, Soo Yeon (Graduate School of EEWS (WCU) and KAIST Institute NanoCentury, Korea Advanced Institute of Science and Technology (KAIST))
Kong, Byung Seon (KCC Central Research Institute)
Choi, Jang Wook (Graduate School of EEWS (WCU) and KAIST Institute NanoCentury, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
Journal of Electrochemical Science and Technology / v.3, no.3, 2012 , pp. 116-122 More about this Journal
Abstract
As an effort to address the chronic capacity fading of Si anodes and thus achieve their robust cycling performance, herein, we develop a unique electrode in which silicon nanoparticles are embedded in the carbon nanotubes network. Utilizing robust contacts between silicon nanoparticles and carbon nanotubes, the composite electrodes exhibit excellent electrochemical performance : 95.5% capacity retention after 140 cycles as well as rate capability such that at the C-rate increase from 0.1C to 1C to 10C, the specific capacities of 850, 698, and 312 mAh/g are obtained, respectively. The present investigation suggests a useful design principle for silicon as well as other high capacity alloying electrodes that undergo large volume expansions during battery operations.
Keywords
Silicon; Carbon nanotube; Chemical vapor deposition; Lithium ion battery; Anode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Tarascon and M. Armand, Nature, 414, 359 (2001).   DOI   ScienceOn
2 M. Armand and J. M. Tarascon, Nature, 451, 652 (2008).   DOI   ScienceOn
3 B. A. Boukamp, G. C. Lesh and R. A. Huggins, J. Electrochem. Soc., 128, 725 (1981).   DOI
4 A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon and W. van Schalkwijk, Nat. Mater., 4, 366 (2005).   DOI   ScienceOn
5 C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, Nat. Nanotechnol., 3, 31 (2008).   DOI   ScienceOn
6 H. Kim, M. Seo, M.-H. Park and J. Cho, Angew. Chem. Int. Ed., 49, 2146 (2010).   DOI   ScienceOn
7 S.-H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.-P. Guo and H.-K. Liu, Angew. Chem. Int. Ed., 45, 6896 (2006).   DOI   ScienceOn
8 J. Yang, M. Winter and J. O. Besenhard, Solid State Ionics, 90, 281 (1996).   DOI   ScienceOn
9 L.-F. Cui, L. Hu, H. Wu, J. W. Choi and Y. Cui, J. Electrochem. Soc., 158, A592 (2011).   DOI   ScienceOn
10 J. W. Choi, J. McDonough, S. Jeong, J. S. Yoo, C. K. Chan and Y. Cui, Nano Lett., 10, 1409 (2010).   DOI   ScienceOn
11 C. K. Chan, R. N. Patel, M. J. O'Connell, B. A. Korgel and Y. Cui, ACS Nano, 4, 1443 (2010).   DOI   ScienceOn
12 M. Ge, J. Rong, X. Fang and C. Zhou, Nano Lett., 12, 2318 (2012).   DOI   ScienceOn
13 M. T. McDowell, S. W. Lee, I. Ryu, H. Wu, W. D. Nix, J. W. Choi and Y. Cui, Nano Lett., 11, 4018 (2011).   DOI   ScienceOn
14 M.-H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho, Nano Lett., 9, 3844 (2009).   DOI   ScienceOn
15 T. Song, J. Xia, J.-H. Lee, D. H. Lee, M.-S. Kwon, J.-M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. Huang, K.-C. Hwang, J. A. Rogers and U. Paik, Nano Lett., 10, 1710 (2010).   DOI   ScienceOn
16 H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu and Y. Cui, Nat. Nanotechnol., 7, 310 (2012).   DOI   ScienceOn
17 Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix and Y. Cui, Nano Lett., 11, 2949 (2011).   DOI
18 J. Cho, J. Mater. Chem., 20, 4009 (2010).   DOI   ScienceOn
19 T. H. Hwang, Y. M. Lee, B.-S. Kong, J.-S. Seo and J. W. Choi, Nano Lett., 12, 802 (2011).
20 A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala and G. Yushin, Nat. Mater., 9, 353 (2010).   DOI   ScienceOn
21 H. M. Jeong, S. Y. Lee, W. H. Shin, J. H. Kwon, A. Shakoor, T. H. Hwang, S. Y. Kim, B.-S. Kong, J.-S. Seo, Y. M. Lee, J. K. Kang and J. W. Choi, RSC Advances, 2, 4311 (2012).   DOI   ScienceOn
22 L. Su, Z. Zhou and M. Ren, Chem. Commun., 46, 2590 (2010).   DOI   ScienceOn
23 H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno and Y. Homma, Nano Lett., 8, 2082 (2008).   DOI   ScienceOn
24 B. Hertzberg, A. Alexeev and G. Yushin, J. Am. Chem. Soc., 132, 8548 (2010).   DOI   ScienceOn
25 J. W. Choi, L. Hu, L. Cui, J. R. McDonough and Y. Cui, J. Power Sources, 195, 8311 (2010).   DOI   ScienceOn
26 K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts and A. A. Lucas, Carbon, 34, 1249 (1996).   DOI   ScienceOn
27 A. Netz, R. A. Huggins and W. Weppner, J. Power Sources, 119-121, 95 (2003).   DOI   ScienceOn
28 S. Bourderau, T. Brousse and D. M. Schleich, J. Power Sources, 81-82, 233 (1999).   DOI   ScienceOn
29 U. Kasavajjula, C. Wang and A. J. Appleby, J. Power Sources, 163, 1003 (2007).   DOI   ScienceOn
30 Y. M. Lee, J. Y. Lee, H.-T. Shim, J. K. Lee and J.-K. Park, J. Electrochem. Soc., 154, A515 (2007).   DOI   ScienceOn
31 L. Wang, C. X. Ding, L. C. Zhang, H. W. Xu, D. W. Zhang, T. Cheng and C. H. Chen, J. Power Sources, 195, 5052 (2010).   DOI   ScienceOn
32 J. P. Maranchi, A. F. Hepp, A. G. Evans, N. T. Nuhfer and P. N. Kumta, J. Electrochem. Soc., 153, A1246 (2006).   DOI   ScienceOn