• Title/Summary/Keyword: EEM(excitation emission matrix)

Search Result 12, Processing Time 0.026 seconds

Excitation and Emission Properties of Adsorbed U(VI) on Amorphous Silica Surface

  • Jung, Euo Chang;Kim, Tae-Hyeong;Kim, Hee-Kyung;Cho, Hye-Ryun;Cha, Wansik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.497-508
    • /
    • 2020
  • In the geochemical field, the chemical speciation of hexavalent uranium (U(VI)) has been widely investigated by performing measurements to determine its luminescence properties, namely the excitation, emission, and lifetime. Of these properties, the excitation has been relatively overlooked in most time-resolved laser fluorescence spectroscopy (TRLFS) studies. In this study, TRLFS and continuous-wave excitation-emission matrix spectroscopy are adopted to characterize the excitation properties of U(VI) surface species that interact with amorphous silica. The luminescence spectra of U(VI) measured from a silica suspension and silica sediment showed very similar spectral shapes with similar lifetime values. In contrast, the excitation spectra of U(VI) measured from these samples were significantly different. The results show that distinctive excitation maxima appeared at approximately 220 and 280 nm for the silica suspension and silica sediment, respectively.

Prediction of Trihalomethanes Formation Potential of Dissolved Organic Matter with Various Sources Using Differential Fluorescence 3D-Excitation-Emission Matrix (EEM) (차등 3차원 형광 여기-방출 매트릭스를 이용한 다양한 기원의 용존 유기물질 트리할로메탄 생성능 예측)

  • Bae, Kyung Rok;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.63-71
    • /
    • 2022
  • This study aimed to maximize the potential of fluorescence 3D excitation-emission matrix (EEM) for predicting the trihalomethane formation potential (THMFP) of DOM with various sources. Fluorescence spectroscopy is a useful tool for characterizing dissolved organic matter (DOM). In this study, differential spectroscopy was applied to EEM for the prediction of THMFP, in which the difference between the EEM before and after chlorination was taken into account to obtain the differential EEM (DEEM). For characterization of the original EEM or the DEEM, the maximum intensities of several different fluorescence regions in EEM, fluorescence EEM regional integration (FRI), and humification index (HIX) were calculated and used for the surrogates for THMFP prediction. After chlorination, the fluorescence intensity decreased by 77% to 93%. In leaf-derived and effluent DOM, there was a significant decrease in the protein-like peak, while a more pronounced decrease was observed in the humic-like peak of river DOM. In general, leaf-derived and effluent DOM exhibited a relatively lower THMFP than the river DOM. Our results were consistent with the high correlations between humic-like fluorescence and THMFP previously reported. In this study, HIX (r= 0.815, p<0.001), FRI region V (r=0.727, p<0.001), humic-like peak (r= 0.827, p<0.001) from DEEM presented very high correlations with THMF P. When the humic-like peak intensity was converted to a logarithmic scale, a higher correlation was obtained (r= 0.928, p<0.001). This finding suggests that the humic-like peak in DEEM can serve as a universal predictor for THM formation of DOM with various origins.

Application of Newly PAC Selection Method Based on Economic Efficiency (경제성을 고려한 새로운 PAC 선정방법의 적용)

  • Kim, Young-Il;Bae, Byung-Uk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1141-1147
    • /
    • 2006
  • In order to applicate a newly method for powdered activated carbon(PAC) selection based on economic efficiency, PAC adsorption tests were performed for removal of MIB and dissolved organic carbon(DOC) in drinking water supplies. The removal rate of MIB increased when the PAC dose increased. The Coal-based PACs were superior for adsorption of MIB compared to wood-based PACs. PAC adsorption of DOC and $UV_{254}$ were a little different for different PACs and types of raw water, but both were lower than adsorption of MIB. Among the tested PACs, the one called P-1000 was most effective for removal of MIB, DOC and $UV_{254}$. Most of the organics in the tested samples were proven by excitation emission matrix(EEM) results to be fulvic-like materials. Especially, fulvic-like materials, humic-like materials, and soluble microbial byproduct(SMP)-like materials decreased after contact with PAC. P-1000 which had the lowest MIB cost index(MCI) was selected as the optimum PAC for the target water. PAC efficiency and treatability, particle size and distribution, and the cost associated with PAC dosing for MIB removal according to DOC concentration should all be considered before making the final selection of the best PAC for the target water.

Characterizing Fluorescence Properties of Dissolved Organic Matter for Water Quality Management of Rivers and Lakes (하천 및 호소 수질관리를 위한 용존 자연유기물질 형광특성 분석)

  • Hur, Jin;Shin, Jae-Ki;Park, Sung-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.940-948
    • /
    • 2006
  • Fluorescence measurements of dissolved organic matter(DOM) have the superior advantages over other analysis tools for applying to water quality management. They are simple and fast and require minimal pretreatment of samples. Fluorescence index($F_{450}/F_{500}$), synchronous spectra, and fluorescence excitation-emission matrices(EEM) of various DOM samples were investigated to discriminate autochthonous/allochthonous composition, protein-like fluorescence, fulvic-like fluorescence, humic-like fluorescence, terestrial humic-like fluorescence by comparing among the real DOM samples of different origins with the help of literature. The samples used included standard purified DOM, lake, river and wastewater treatment effluent. The relative distribution of various DOM composition was derived from the ratios of each fluorescence region. The results were very consistent with those expected from the sample properties. Allochthonous and terrestrial humic-like fluorescence were more prominent in the samples with abundant soil-derived DOM components. In addition, the protein-like fluorescence property was more pronounced in the samples where strong algal or microbial activities were expected. It was also shown that the ratio of protein-like/terrestrial humic-like fluorescence obtained from synchronous spectrum and fluorescence EEM could be used as an indicator for the evaluation of wastewater treatment on the downstream water quality of rivers and for the prediction of the degree of algal/microbial activities in lakes. It is expected that the results of this study will provide the basic information to develop the future water quality management techniques using DOM fluorescence measurements.

The Study of Optical Biopsy‘s Usefulness in Radiotherapy (방사선 치료에서 광학적 생검의 유용성에 관한 연구)

  • ;;Muller M.G.,;Feld M.S.
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • The prior purpose of this study is to introduce a optical biopsy and evaluate whether the optical biopsy, real-time, non-invasive technique, is a reliable tool to assess response to radiotherapy Four healthy volunteers, and four patients with inflammatory conditions of the oral cavity participated on the study. was obtained from each person enrolled in the study. Using FastEEM(Ercited Emission Matrix) as a optical biopsy tool, normal and tumor spectra are taken from the normal and the tumor regions. And then second optical biopsy are taken from the tumor regions in 4 patients with time delay at 7days.. Using a diagnostic algorithm, made by Gillenwater based on spectra excited at 337nm The Optical Biopsy turned out to be more suited for tumor diagnostic resulting in significant difference fluorescence spectra. The fluorescence intensity of cancerous tissue showed a higher position. The second fluorescence intensity of optical biopsy of cancerous oral tissue has more smaller than the first result. I conclude that optical biopsy, which technique don't need to remove tissue sample from body, and is a real time , and non-invasive measurement is a reliable tool to access to radiotherapy because FastEEM can do measure the variation of the tissue composition chemical, biological, and morphological after radiotherapy. Based on the fluorescence spectrum are taken from the optical biopsy in normal and tumor spectra as well as tumor spectra after 7days.

  • PDF

Advanced Analytical Techniques for Dissolved Organic Matter and Their Applications in Natural and Engineered Water Treatment Systems (최근 용존 유기물 분석 기법 및 자연환경과 수 처리 시스템 내 활용방안)

  • Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.31-42
    • /
    • 2022
  • Dissolved organic matter (DOM), which changes according to various factors, is ubiquitously present from natural environments to engineered treatment systems. Only limited information is available regarding the environmental functions of DOM after bulk analyses are only applied for characterization. In this paper, latest DOM analytical techniques are briefly introduced, which include fluorescence excitation-emission matrix with parallel factor analysis (EEM-PARAFAC), size-exclusion chromatography with an organic carbon detector (SEC-OCD), carbon/nitrogen stable-isotope ratio, and Fourier transform-ion cyclotron resonance-mass spectroscopy (FT-ICR-MS). Recent examples of using advanced analyses to interpret the phenomena associated with DOM occurring in natural and engineered systems are presented here. Through EEM-PARAFAC, different components like protein-like, fulvic-like, and humic-like can be identified and tracked individually through the investigated systems. SEC-OCD allows researchers to quantify different size fractions. FT-ICR-MS provides thousands of molecular formulas present in bulk DOM samples. Lastly, carbon/nitrogen stable-isotope ratio offers reasonable tools for tracking the sources in environments. We also discuss the advantages and weakness of the above-mentioned characterizing tools. Specifically, they focus on single environmental factors (different sourced-DOM and interaction of sediment-pore water) or simple changes after individual treatment processes. Through collaboration with the advanced techniques later, they help the researchers to better understand environmental behaviors in aquatic systems and serve as essential tools for addressing various pending problems associated with DOM.

Removal of Dissolved Organic Matters in Drinking Water by GAC adsorption using RSSCT (RSSCT를 이용한 GAC의 상수원수 내 용존유기물질 제거)

  • Kim, Young Il;Bae, Byung Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.727-736
    • /
    • 2006
  • Granular activated carbon (GAC) has been identified as a best available technology (BAT) by the United States Environmental Protection Agency (USEPA) for removal disinfection by-product (DBP) precursors, such as dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). Rapid small-scale column test (RSSCT) were used to investigate four types of carbon (F400, Norit1240, Norit40S, and Aquasorb1500) for their affinity to absorb natural organic matter (NOM). DOC, $UV_{254}$, and Total dissolved nitrogen (TON) concentrations were measured in the column effluent to track GAC breakthrough. DOC and $UV_{254}$ breakthrough occurred at around 3500 bed volumes (BVs) of operation for all GACs investigated. The $UV_{254}$ breakthrough curves showed 33% to 48% at 8000 BVs, when the DOC was 48% to 65%. All GACs showed greater removal in DOC than $UV_{254}$. The NORIT1240 GAC was determined to have the highest adsorption capacity for DOC and $UV_{254}$. The removal of nitrate (NOTN) had not broken through over BVs. The initial TON breakthrough curves were started around 50%, when the DOC breakthrough was only 10 % at 500 BVs. The curves were gradually increased after 3500 BVs and approximately 69% through 81% of TON breakthrough occurred at 8000 BVs. All of the GACs were able to remove TON, in the case of this investigation the majority of the TON was present as DON. Because nitrate nitrogen was seldom removed and ammonium nitrogen ($NH_3-N$) was not detected in the effluent from RSSCTs even though raw water. The carbon usage rate of DOC was from 2 to 6 times less than that of TON. The NORIT1240 GAC demonstrated the best performance in terms of DOC removal, while the F400 GAC was best in terms of TON removal. Excitation emission matrix(EEM) analysis was used to show that GAC adsorption successfully removed most of Humic-like DOC and Fulvic-like DOCs. However, soluble microbial product(SMP)-like DOC in the absence of raw water were detected in the NORIT40S and Aquasorb1500 GAC. The authors assumed that this results is due probably to the part of GAC in the RSSCT which was converted into biological activated carbon(BAC). To compare with organics removal by GAC according to preloading, the virgin GACs had readily accessible sites that were adsorbed DOC more rapidly than preloaded GACs, but the TDN removal had not showed differences between those GACs.

Influences of Environmental Conditions and Refractory Organic Matters on Organic Carbon Oxidation Rates Measured by a High Temperature Combustion and a UV-sulfate Methods (다양한 환경요인과 난분해성 유기물에 따른 고온산화 및 UV산화방식 총 유기탄소 산화율 변화)

  • Jung, Heon-Jae;Lee, Bo-Mi;Lee, Keun-Heon;Shin, Hyun-Sang;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.98-107
    • /
    • 2016
  • This study examined the effects of environmental conditions and the presence of refractory organic matter on oxidation rates of total organic carbon (TOC) measurements based on high temperature combustion and ultraviolet-sulfate methods. Spectroscopic indices for prediction of oxidation rates were also explored using the UV spectra and fluorescence excitation-emission matrix (EEM) of humic acids. Furthermore, optimum TOC instrument conditions were suggested by comparing oxidation rates of a standard TOC material under various conditions. Environmental conditions included salts, reduced ions, and suspended solids. Salts had the greatest influence on oxidation rates in the UV-sulfate method. However, no effect was detected in the high temperature combustion method. The UV-sulfate method showed lower humic substance oxidation rates, refractory natural organic matter, compared to the other methods. TOC oxidation rates for the UV-sulfate method were negatively correlated with higher specific-UV absorbance, humification index, and humic-like EEM peak intensities, suggesting that these spectroscopic indices could be used to predict TOC oxidation rates. TOC signals from instruments using the UV-sulfate method increased with increasing chamber temperature and increasing UV exposure durations. Signals were more sensitive to the former condition, suggesting that chamber temperature is important for improving the TOC oxidation rates of refractory organic matter.

Characterization of Dissolved Organic Matter in Stream and Industrial Waste Waters of Lake Sihwa Watershed by Fluorescence 3D-EEMs Analysis (형광 3D-EEMs를 이용한 시화호유역 하천 및 공단폐수의 유기물 특성 분석)

  • Lee, Mi-Kyung;Choi, Kwang-Soon;Kim, Sea-Won;Kim, Dong-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.803-810
    • /
    • 2009
  • This study is conducted to examine spatial variations of Dissolved Organic Matter (DOM) in stream and waste waters of the different watershed areas (agricultural, residential, and industrial complex area) by using fluorescence 3D-EEMs (3 Dimensional Excitation Emission Matrix Spectroscopy). Furthermore, the research investigates the changes of DOM characterization by synchronous and 3D-EEMs during a rainfall event. The characterizations of DOM obtained by 3D-EEMs show two noticeable peaks at humic and protein-like regions. Humic-like substances (HLS) are found in rural and urban areas, and humic and protein-like substances (PLS) are shown in industrial area. According to the fluorescence peak $T_1:C_1$ ratios, it is observed that high amount of HLS was discharged from Banweol Industrial Complex (3TG). Additionally, linear relationships (Regression rate, $r^2$=0.65, $r^2$=0.66) have been shown between PLS (peak $T_1,\;B_1$) and biochemical oxygen demand (BOD), which indicates the impact of sewage. For the rainfall event (30 mm), no remarkable difference of DOM was found at rural area except increment of fluorescence intensity comparing dry period. In contrast, HLS at urban area is highly discharged within 30 minutes from the beginning of rainfall. Also, there are high influences of HLS and PLS within 20 minutes at industrial complex (4TG). Fluorescence 3D-EEMs has not only verifies a watershed of DOM origination but also monitors diffuse and point source impacts.

A Study on the Dynamics of Dissolved Organic Matter Associated with Ambient Biophysicochemical Factors in the Sediment Control Dam (Lake Youngju) (영주댐 유사조절지 상류의 용존유기물 (Dissolved Organic Matter) 특성과 물리·화학 및 생물학적 환경 요인과의 연관성 연구)

  • Oh, Hye-Ji;Kim, Dokyun;Choi, Jisoo;Chae, Yeon-Ji;Oh, Jong Min;Shin, Kyung-Hoon;Choi, Kwangsoon;Kim, Dong-Kyun;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.346-362
    • /
    • 2021
  • A sediment control dam is an artificial structure built to prolong sedimentation in the main dam by reducing the inflow of suspended solids. These dams can affect changes in dissolved organic matter (DOM) in the water body by changing the river flow regime. The main DOM component for Yeongju Dam sediment control of the Naeseongcheon River was analyzed through 3D excitation-emission matrix (EEM) and parallel factor (PARAFAC) analyses. As a result, four humic-like components (C1~C3, C5), and three proteins, tryptophan-like components (C2, C6~C7) were detected. Among DOM components, humic-like components (autochthonous: C1, allochthonous: C2~C3) were found to be dominant during the sampling period. The total amount of DOM components and the composition ratio of each component did not show a difference for each depth according to the amount of available light (100%, 12%, and 1%). Throughout the study period, the allochthonous organic matter was continuously decomposing and converting into autochthonous organic matter; the DOM indices (fluorescence index, humification index, and freshness index) indicated the dominance of autochthonous organic matter in the river. Considering the relative abundance of cyanobacteria and that the number of bacteria cells and rotifers increased as autochthonous organic matter increased, it was suggested that the algal bloom and consequent activation of the microbial food web was affected by the composition of DOM in the water body. Research on DOM characteristics is important not only for water quality management but also for understanding the cycling of matter through microbial food web activity.