• Title/Summary/Keyword: EEG signal

Search Result 360, Processing Time 0.029 seconds

A design of FFT processor for EEG signal analysis (뇌전기파 분석용 FFT 프로세서 설계)

  • Kim, Eun-Suk;Kim, Hae-Ju;Na, Young-Heon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.88-91
    • /
    • 2010
  • This paper describes a design of fast Fourier transform(FFT) processor for EEG(electroencephalogram) signal analysis for health care services. Hamming window function with 1/2 overlapping is adopted to perform short-time FFT(ST-FFT) of a long period EEG signal occurred in real-time. In order to analyze efficiently EEG signals which have frequency characteristics in the range of 0 Hz to 100 Hz, a 256-point FFT processor based on single-memory bank architecture and radix-4 algorithm is designed. The designed FFT processor has high accuracy with arithmetic error less than 3%.

  • PDF

Analysis of Technology and Research Trends in Biomedical Devices for Measuring EEG during Driving (운전 중 EEG 측정을 위한 생체의료기기의 기술 및 연구동향 분석)

  • Gyunhen Lee;Young-Jin Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1179-1187
    • /
    • 2023
  • Recent advancements in modern transportation have led to the active development of various biomedical signal and medical imaging technologies. Particularly, in the field of cognitive/neuroscience, the importance of electroencephalography (EEG) measurement and the development of accurate EEG measurement technology in moving vehicles represent a challenging area. This study aims to extensively investigate and analyze the trends in technology research utilizing EEG during driving. For this purpose, the Scopus database was used to explore EEG-related research conducted since the year 2000, resulting in the selection of about 40 papers. This paper sheds light on the current trends and future directions in signal processing technology, EEG measurement device development, and in-vehicle driver state monitoring technology. Additionally, a ultra compact 32-channel EEG measurement module was designed. By implementing it simply and measuring and analyzing EEG signals, in-vehicle EEG module's functionality was checked. This research anticipates that the technology for measuring and analyzing biometric signals during driving will contribute to driver care and health monitoring in the era of autonomous vehicles.

A Study on the Automated Analysis of Multichannel EEG Signal (다중 채널 EEG신호 자동 해석에 관한 연구)

  • Cho, Jae-H.;Chang, Tae-G.;Yang, Won-Y.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.293-295
    • /
    • 1992
  • This Paper presents the design of an automated EEG analyzing system. The design considerations including processing speed, A/D conversion, filtering, and waveforms detection, are overviewed with the description of the associated EEG charateristics. The architecture of the currently implemented system consists of a -controller based front-end signal processing unit and a host computer system. The data acquisition procedures are described along with a couple of illustrations of the acquired EEG/EOG signal.

  • PDF

EEG data compression using subband coding techniques (대역 분할 부호화 기법을 이용한 EEG 데이타 압축)

  • Lee, Jong-Ug;Huh, Jae-Man;Kim, Taek-Soo;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.338-341
    • /
    • 1993
  • A EEG(ElectroEncephaloGram) compression scheme based on subband coding techniques is presented in this paper. Considering the frequency characteristics of EEG, the raw signal was decomposed into different frequency bands. After decomposition, optimal bit allocation was done by adapting to the standard deviation in each frequency bands, and decomposed signals were quantized using pdf(probability density function)-optimized nonuniform quantizer. Based on the above mentioned coding scheme, coding results of various multichannel EEG signal were shown with compression ratio and SNR(signal-to-noise ratio).

  • PDF

Power Spectrum Estimation of EEG Signal Using Robust Filter (로버스트 필터를 이용한 EEG 신호의 스펙트럼 추정)

  • 김택수;허재만
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.125-132
    • /
    • 1992
  • Background EEG signals can be represented as the sum of a conventional AR process and an innovation process. It Is know that conventional estimation techniques, such as least square estimates (LSE) or Gaussian maximum likelihood estimates (MLE-G ) are optimal when the innovation process satisfies the Gaussian or presumed distribution. When the data are contaminated by outliers, however, these assumptions are not met and the power spectrum estimated by conventional estimation techniques may be fatally biased. EEG signal may be affected by artifacts, which are outliers in the statistical term. So the robust filtering estimation technique is used against those artifacts and it performs well for the contaminated EEG signal.

  • PDF

The characteristic analysis of EEG artifacts (EEG 잡파 특성 분석)

  • Yang, Eun-Joo;Shin, Dong-Sun;Kim, Eung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.366-372
    • /
    • 2002
  • EEG is the electrical signal, which is occurred during information processing in the brain. These EEG signal are measured by non-invasive method. EEG has many useful information for brain activity, but artifacts which are included in EEG prevents EEG analysis, so many efforts are devoted to remove these artifacts in EEG. However, this study is going to analysis the feature of the EEG mixed with artifacts in forward-looking way, by using this way, we have found the possibility that is actually applicable to system such as control system. We have made feature difference after the linear as well as nonlinear analysis regarding EEG including typical artifacts, eye-blinking, eye rolling, muscle, and so forth.

Signal Conditioning Filters for EEG Waveforms Detection

  • Chang, Tae-G.;Park, Seung-Hun
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.184-185
    • /
    • 1992
  • This paper investigates the EEG waveform distortions caused by the transient responses of the various types of signal conditioning filters, which are generally introduced for the automated EEG analysis. This study explicitly simulates the filter responses to the typical EEG waveform models, and compares the distortions.

  • PDF

Motor Imagery EEG Classification Method using EMD and FFT (EMD와 FFT를 이용한 동작 상상 EEG 분류 기법)

  • Lee, David;Lee, Hee-Jae;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1050-1057
    • /
    • 2014
  • Electroencephalogram (EEG)-based brain-computer interfaces (BCI) can be used for a number of purposes in a variety of industries, such as to replace body parts like hands and feet or to improve user convenience. In this paper, we propose a method to decompose and extract motor imagery EEG signal using Empirical Mode Decomposition (EMD) and Fast Fourier Transforms (FFT). The EEG signal classification consists of the following three steps. First, during signal decomposition, the EMD is used to generate Intrinsic Mode Functions (IMFs) from the EEG signal. Then during feature extraction, the power spectral density (PSD) is used to identify the frequency band of the IMFs generated. The FFT is used to extract the features for motor imagery from an IMF that includes mu rhythm. Finally, during classification, the Support Vector Machine (SVM) is used to classify the features of the motor imagery EEG signal. 10-fold cross-validation was then used to estimate the generalization capability of the given classifier., and the results show that the proposed method has an accuracy of 84.50% which is higher than that of other methods.

Drone Based Sensor Network Scenario for the Efficient Pedestrian's EEG Signal Transmission (효율적인 보행자의 EEG 신호 전송을 위한 드론기반 센서네트워크 시나리오)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.9
    • /
    • pp.923-928
    • /
    • 2016
  • The various technologies related to the monitoring human health in real-time for the emergency situations are developing these days. Mostly the human pulse is used for measuring as the vital signs so far, but the EEG became a major research trend now. However, there are some problems measuring and sending EEG signals of all the people walking down the street to the dedicated server. Especially, there are some restrictions for collecting and sending EEG signals in 2-dimensional space in real-time. Therefore, I suggests an efficient network model using 3-dimensional space of drones to avoid the restrictions. The models are designed, simulated, and evaluated with the Opnet simulator.

Implementation of EEG Artifact Removal Process Based on Bispectrum Analysis (바이스펙트럼 분석 기반의 뇌파 Artifact 제거 프로세스 구현)

  • Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.63-69
    • /
    • 2019
  • In this study, bispectrum analysis method introduced to reduce variability of SEF(spectral edge frequency) and MF(median frequency), which are the anesthetic depth indexes extracted by EEG spectral analysis. Bispectrum analysis is an analytical method that can confirm the nonlinearity of EEG. Signal measurement and analysis in the surgical environment should take into consideration various external artifact factors. Bispectrum analysis can confirm the presence of externally introduced artifacts, thereby effectively eliminating artifacts that affect the EEG signal. By applying bispectrum parameters, real-time variability of the anesthetic depth parameters SEF, MF could be reduced. Elimination of variability makes it possible to use SEF, MF as a real-time index during surgery.