• Title/Summary/Keyword: EEG Classification

Search Result 201, Processing Time 0.023 seconds

Automatic EEG and Artifact Classification Using Neural Network (신경망을 사용한 뇌파 및 Artifact 자동 분류)

  • Ahn, Chang-Beom;Lee, Taek-Yong;Lee, Sung-Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.157-166
    • /
    • 1995
  • The Electroencephalogram (EEG) and evoked potential (EP) t;ave widely been used for study of brain functions. The EEG and EP signals acquired from multi-channel electrodes placed on the head surface are often interfered by other relatively large physiological signals such as electromyogram (EMG) or electroculogram (EOG). Since these artifact-affected EEG signals degrade EEG mapping, the removal of the artifact-affected EEGs is one of the key elements in neuro-functional mapping. Conventionally this task has been carried out by human experts spending lots of examination time. In this paper a neural-network based classification is proposed to replace or to reduce human expert's efforts and time. From experiments, the neural-network based classification performs as good as human experts : variation of decisions between the neural network and human expert appears even smaller than that between human experts.

  • PDF

Prediction and Classification System for Temporal lobe Epilepsy (측두엽 간질 예측과 분류시스템)

  • Kim, Min-Soo;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.199-206
    • /
    • 2004
  • Epileptic seizures result from a temporary electrical disturbance of the brain. In this paper, a method of discriminating EEG for diagnoses of temporal lobe epilepsy is proposed. The proposed method for classification of epilepsy and sleep EEG is based on the wavelet transform and the fuzzy c-means. The magnitude and mean of wavelet coefficients for each EEG band are applied to the cluster of the FCM classifier. The proposed system show a little more accurate diagnosis for EEG by analysis of frequency for Wavelet and the success rate of 95% classification using FCM. From the simulation results by the implemented system, we demonstrated this research can be reduce doctor's labors and realize quantitative diagnosis of EEG.

Feature extraction and Classification of EEG for BCI system

  • Kim, Eung-Soo;Cho, Han-Bum;Yang, Eun-Joo;Eum, Tae-Wan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.260-263
    • /
    • 2003
  • EEC is an electrical signal, which occurs during information processing in the brain. These EEG signals has been used clinically, but nowadays we are mainly studying Brain-Computer Interface(BCI) such as interfacing with a computer through the EEG controlling the machine through the EEG The ultimate purpose of BCI study is specifying the EEG at various mental states so as to control the computer and machine. A BCI has to perform two tasks, the parameter estimation task, which attemps to describe the properties of the EEG signal and the classification task, which separates the different EEC patterns based on the estimated parameters. First, we have to do parameter estimation of EEG to embody BCI system. It is important to improve performance of classifier, But, It is not easy to do parameter estimation by reason of EEG is sensitivity and undergo various influences. Therefore, this research should do parameter estimation and classification of the EEG to use various analysis algorithm.

  • PDF

Sensibility Classification Algorithm of EEGs using Multi-template Method (다중 템플릿 방법을 이용한 뇌파의 감성 분류 알고리즘)

  • Kim Dong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.12
    • /
    • pp.834-838
    • /
    • 2004
  • This paper proposes an algorithm for EEG pattern classification using the Multi-template method, which is a kind of speaker adaptation method for speech signal processing. 10-channel EEG signals are collected in various environments. The linear prediction coefficients of the EEGs are extracted as the feature parameter of human sensibility. The human sensibility classification algorithm is developed using neural networks. Using EEGs of comfortable or uncomfortable seats, the proposed algorithm showed about 75% of classification performance in subject-independent test. In the tests using EEG signals according to room temperature and humidity variations, the proposed algorithm showed good performance in tracking of pleasantness changes and the subject-independent tests produced similar performances with subject-dependent ones.

Deep Learning-Based Model for Classification of Medical Record Types in EEG Report (EEG Report의 의무기록 유형 분류를 위한 딥러닝 기반 모델)

  • Oh, Kyoungsu;Kang, Min;Kang, Seok-hwan;Lee, Young-ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.203-210
    • /
    • 2022
  • As more and more research and companies use health care data, efforts are being made to vitalize health care data worldwide. However, the system and format used by each institution is different. Therefore, this research established a basic model to classify text data onto multiple institutions according to the type of the future by establishing a basic model to classify the types of medical records of the EEG Report. For EEG Report classification, four deep learning-based algorithms were compared. As a result of the experiment, the ANN model trained by vectorizing with One-Hot Encoding showed the highest performance with an accuracy of 71%.

The methodology on the application of EEG as a diagonostic measures in Korean Traditional Medicine (뇌파의 한의학적 진단 지표로의 활용 방안에 대한 연구초안)

  • Seo, Young-Hyo;Kim, Gyeong-Cheol;Kim, Bo-Kyung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.18 no.1
    • /
    • pp.37-61
    • /
    • 2007
  • Objective : By examining EEG status in Korean Traditional Medicine (KTM) from the viewpoint of 'form-qi theory(形氣論)', We wish to prepare for the fundamentals of applicability of KTM diagnoses to EEG. In addition, through reinterpretation of existing Western Medicine reports from the viewpoint of KTM, We tried to find out interrelationship between them. Method : In this paper, a methodology applicable to KTM diagnoses of EEG is presented from the EEG features in waveform characteristics, personalized diversity, and cognitive activity reflection. Results : Frequency bands are assigned to corresponding one of the eight trigrams in terms of yin/yang balance, which is analogous with EEG spectrum analysis mostly used in EEG quantification. The amplitude ratio of each EEG for each frequency band gives meaningful index numbers which can be used in EEG data interpretation, and every index number is named after the sixty four hexagrams. These approaches are adopted through both '4-band classification system and '6-band classification system', and applied to pre-existing reported EEG data obtained from normal adults. These analyses show that changes and distribution pattern in the index numbers are observed as a whole on both left-right line and front-back line connecting EEG measurement cephalic electrodes. And differences in distribution pattern of three index numbers deduced from '6-band classification system' are discussed according to constitution. Conclusion : The index numbers introduced here, which are the spectral power ratio for each EEG, are based on KTM yin/yang balance. These index numbers vary according to cephalic location, so its application in terms of traditional meridian theory is strongly expected. The index number distribution also shows different patterns according to constitution.

  • PDF

Nonnegative Tensor Factorization for Continuous EEG Classification (연속적인 뇌파 분류를 위한 비음수 텐서 분해)

  • Lee, Hye-Kyoung;Kim, Yong-Deok;Cichocki, Andrzej;Choi, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.497-501
    • /
    • 2008
  • In this paper we present a method for continuous EEG classification, where we employ nonnegative tensor factorization (NTF) to determine discriminative spectral features and use the Viterbi algorithm to continuously classily multiple mental tasks. This is an extension of our previous work on the use of nonnegative matrix factorization (NMF) for EEG classification. Numerical experiments with two data sets in BCI competition, confirm the useful behavior of the method for continuous EEG classification.

Epileptic Seizure Detection Using CNN Ensemble Models Based on Overlapping Segments of EEG Signals (뇌파의 중첩 분할에 기반한 CNN 앙상블 모델을 이용한 뇌전증 발작 검출)

  • Kim, Min-Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.587-594
    • /
    • 2021
  • As the diagnosis using encephalography(EEG) has been expanded, various studies have been actively performed for classifying EEG automatically. This paper proposes a CNN model that can effectively classify EEG signals acquired from healthy persons and patients with epilepsy. We segment the EEG signals into sub-signals with smaller dimension to augment the EEG data that is necessary to train the CNN model. Then the sub-signals are segmented again with overlap and they are used for training the CNN model. We also propose ensemble strategy in order to improve the classification accuracy. Experimental result using public Bonn dataset shows that the CNN can detect the epileptic seizure with the accuracy above 99.0%. It also shows that the ensemble method improves the accuracy of 3-class and 5-class EEG classification.

A Study on Recognition of the Event-Related Potential in EEG Signals Using Wavelet and Neural Network (웨이브렛과 신경회로망을 이용한 뇌 유발 전위의 인식에 관한 연구)

  • 최완규;나승유;이희영
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.127-130
    • /
    • 2000
  • Classification of Electroencephalogram(EEG) makes one of key roles in the field of clinical diagnosis, such as detection for epilepsy. Spectrum analysis using the fourier transform(FT) uses the same window to signals, so classification rate decreases for nonstationary signals such as EEG's. In this paper, wavelet power spectrum method using wavelet transform which is excellent in detection of transient components of time-varying signals is applied to the classification of three types of Event Related Potential(EP) and compared with the result by fourier transform. In the experiments, two types of photic stimulation, which are caused by eye opening/closing and artificial light, are used to collect the data to be classified. After choosing a specific range of scales, scale-averaged wavelet spectrums extracted from the wavelet power spectrum is used to find features by Back-Propagation(13P) algorithm. As a result, wavelet analysis shows superiority to fourier transform for nonstationary EEG signal classification.

  • PDF

Improving the Subject Independent Classification of Implicit Intention By Generating Additional Training Data with PCA and ICA

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.14 no.4
    • /
    • pp.24-29
    • /
    • 2018
  • EEG-based brain-computer interfaces has focused on explicitly expressed intentions to assist physically impaired patients. For EEG-based-computer interfaces to function effectively, it should be able to understand users' implicit information. Since it is hard to gather EEG signals of human brains, we do not have enough training data which are essential for proper classification performance of implicit intention. In this paper, we improve the subject independent classification of implicit intention through the generation of additional training data. In the first stage, we perform the PCA (principal component analysis) of training data in a bid to remove redundant components in the components within the input data. After the dimension reduction by PCA, we train ICA (independent component analysis) network whose outputs are statistically independent. We can get additional training data by adding Gaussian noises to ICA outputs and projecting them to input data domain. Through simulations with EEG data provided by CNSL, KAIST, we improve the classification performance from 65.05% to 66.69% with Gamma components. The proposed sample generation method can be applied to any machine learning problem with fewer samples.