• Title/Summary/Keyword: EEG Authentication

Search Result 10, Processing Time 0.027 seconds

An EEG Encryption Scheme for Authentication System based on Brain Wave (뇌파 기반의 인증시스템을 위한 EEG 암호화 기법)

  • Kim, Jung-Sook;Chung, Jang-Young
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.330-338
    • /
    • 2015
  • Gradually increasing the value of the technology, the techniques of the various security systems to protect the core technology have been developed. The proposed security scheme, which uses both a Password and the various devices, is always open by malicious user. In order to solve that problem, the biometric authentication systems are introduced but they have a problem which is the secondary damage to the user. So, the authentication methods using EEG(Electroencephalography) signals were developed. However, the size of EEG signals is big and it cause a lot of problems for the real-time authentication. And the encryption method is necessary. In this paper, we proposed an efficient real-time authentication system applied encryption scheme with junk data using chaos map on the EEG signals.

User Authentication Method using EEG Signal in FIDO System (FIDO 시스템에서 EEG 신호를 이용한 사용자 인증 방법)

  • Kim, Yong-Ki;Chae, Cheol-Joo;Cho, Han-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.465-471
    • /
    • 2018
  • Recently, biometric technology has begun to be used as a fusion of IT technology and financial system. Using this biometric technology, FIDO(Fast Identity Online) technology, Samsung and Apple started Samsung Pay and Apple Pay service. FIDO authentication technology replaces existing authentication methods such as passwords. Among the biometric technologies, fingerprint recognition technology is attracting attention because it can minimize the device and user rejection at a relatively low price. However, fingerprint information has a limited number of users and it can not be reused if fingerprint information is leaked by an external attacker. Therefore, in this paper, we propose a method to authenticate a user using EEG signal which is one of biometrics technologies. W propose a method to use EEG signal measurement value in FIDO system by using convenience channel by using short channel EEG device. And propose a method to utilize EEG signal when the user recognizes a specific entity by measuring the EEG signal before and after recognizing a specific entity.

An Incremental Elimination Method of EEG Samples Collected by Single-Channel EEG Measurement Device for Practical Brainwave-Based User Authentication (실용적 뇌파 기반 사용자 인증을 위한 단일 채널 EEG 측정 장비를 통해 수집된 EEG 샘플의 점진적 제거 방법)

  • Ko, Han-Gyu;Cho, Jin-Man;Choi, Daeseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.383-395
    • /
    • 2017
  • Brainwave-based user authentication technology has advantages such as changeability, shoulder-surfing resistance, and etc. comparing with conventional biometric authentications, fingerprint recognition for instance which are widely used for smart phone and finance user authentication. Despite these advantages, brainwave-based authentication technology has not been used in practice because of the price for EEG (electroencephalography) collecting devices and inconvenience to use those devices. However, according to the development of simple and convenient EEG collecting devices which are portable and communicative by the recent advances in hardware technology, relevant researches have been actively performed. However, according to the experiment based on EEG samples collected by using a single-channel EEG measurement device which is the most simplified one, the authentication accuracy decreases as the number of channels to measure and collect EEG decreases. Therefore, in this paper, we analyze technical problems that need to be solved for practical use of brainwave-based use authentication and propose an incremental elimination method of collected EEG samples for each user to consist a set of EEG samples which are effective to authentication users.

Next-Generation Personal Authentication Scheme Based on EEG Signal and Deep Learning

  • Yang, Gi-Chul
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1034-1047
    • /
    • 2020
  • The personal authentication technique is an essential tool in this complex and modern digital information society. Traditionally, the most general mechanism of personal authentication was using alphanumeric passwords. However, passwords that are hard to guess or to break, are often hard to remember. There are demands for a technology capable of replacing the text-based password system. Graphical passwords can be an alternative, but it is vulnerable to shoulder-surfing attacks. This paper looks through a number of recently developed graphical password systems and introduces a personal authentication system using a machine learning technique with electroencephalography (EEG) signals as a new type of personal authentication system which is easier for a person to use and more difficult for others to steal than other preexisting authentication systems.

Development of a Biometric Authentication System Based on Electroencephalography (뇌파 기반 개인 인증 시스템 개발)

  • Choi, Ga-Young;Kim, Eun-Ji;Kang, Ye-Na;Park, Su-Bin;Park, Su-Jin;Choi, Soo-In;Hwang, Han-Jeong
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.43-47
    • /
    • 2018
  • Traditional electroencephalography (EEG)-based authentication systems generally use external stimuli that require user attention and relatively long time for authentication. The aim of this study is to investigate the feasibility of biometric authentication based on EEG without using any external stimuli. Seventeen subjects took part in the experiment and their EEGs were measured while repetitively closing and opening their eyes. For identifying each subject, we calculated inter- and intra-subject cross-correlation using changes in alpha activity (8-13 Hz) during eyes closed as compared to eyes open. In order to optimize the number of recording electrodes, we calculated authentication accuracy by progressively reducing the number of electrodes used in the analysis. Significant increase in alpha activity was observed for all subjects during eyes closed, focusing on occipital areas, and spatial patterns of changed alpha activity were considerably different between the subjects. A mean authentication accuracy of 92.45% was obtained, which was retained over 75% when using only 8 electrodes placed around occipital areas. Our results could demonstrate the feasibility of the proposed novel authentication method based on resting state EEGs.

Analysis of EEG Reproducibility for Personal Authentication (개인인증을 위한 뇌파의 재현성에 대한 분석)

  • Jung, Yu-Ra;Jang, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.527-532
    • /
    • 2020
  • In this paper, we presented the results of analysis through EEG measurement for the purpose of checking the frequency band of EEG signals that can be used for personal authentication. The measurement status was divided into the open-eye state and the closed-eye state depending on the presence or absence of an optical task. The data measured in the EEG experiments was divided into seven frequency bands : delta waves, theta waves, alpha waves, SMR waves, mid-beta waves, beta waves and gamma waves to identify the frequency band with the smallest power fluctuation over time. In our results, there was no significant difference between the open-eye state and the closed-eye state, and the SMR waves and mid-beta waves related to human concentration had the smallest fluctuation in power over time, and were a highly reproducible frequency band.

EEG Signal Classification based on SVM Algorithm (SVM(Support Vector Machine) 알고리즘 기반의 EEG(Electroencephalogram) 신호 분류)

  • Rhee, Sang-Won;Cho, Han-Jin;Chae, Cheol-Joo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.17-22
    • /
    • 2020
  • In this paper, we measured the user's EEG signal and classified the EEG signal using the Support Vector Machine algorithm and measured the accuracy of the signal. An experiment was conducted to measure the user's EEG signals by separating men and women, and a single channel EEG device was used for EEG signal measurements. The results of measuring users' EEG signals using EEG devices were analyzed using R. In addition, data in the study was predicted using a 80:20 ratio between training data and test data by applying a combination of specific vectors with the highest classifying performance of the SVM, and thus the predicted accuracy of 93.2% of the recognition rate. This paper suggested that the user's EEG signal could be recognized at about 93.2 percent, and that it can be performed only by simple linear classification of the SVM algorithm, which can be used variously for biometrics using EEG signals.

A Study on Development of EEG-Based Password System Fit for Lifecaretainment (라이프케어테인먼트에 적합한 뇌파 기반 패스워드 시스템 개발에 관한 연구)

  • Yang, Gi-Chul
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.8
    • /
    • pp.525-530
    • /
    • 2019
  • Electroencephalography(EEG) studies that have been in clinical research since the discovery of brainwave have recently been developed into brain-computer interface studies. Currently, research is underway to manipulate robot arms and drones by analyzing brainwave. However, resolution and reliability of EEG information is still limited. Therefore, it is required to develop various technologies necessary for measuring and interpreting brainwave more accurately. Pioneering new applications with these technologies is also important. In this paper, we propose development of a personal authentication system fit for lifecaretainment based on EEG. The proposed system guarantees the resolution and reliability of EEG information by using the Electrooculogram and Electromyogram(EMG) together with EEG.

EEG-based Person Authentication using Face-Specific Self Representation (본인의 얼굴 영상에 반응하는 뇌전도 신호 기반 개인 인증)

  • Yeom, Seul-Ki;Suk, Heung-Il;Lee, Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.379-382
    • /
    • 2011
  • 인터넷 뱅킹, 전자 상거래 등의 도래에 따라 생체 인식이 중요한 이슈가 되고 있다. 이에 따라 뇌전도(Electro Encephalo Graphy: EEG)로 측정되는 생체 신호를 통하여 기존 생체 인식의 단점을 보완하는 새로운 연구가 시도되고 있다. 본 논문에서는 인간 본인의 얼굴 사진에 특별한 반응을 보인다는 신경 생리학적 지식을 기반으로 한, 새로운 개인 인증 기술을 제안한다. 구체적으로는 뇌 신호 반응 유도를 위한 시각 자극 제시 패러다임의 설계 EEG신호의 특징을 추출을 위한 개인-의존적인 시간 영역 및 채널 선택 및 효율적인 분류기 설계 방법을 제안한다. 제안한 방법을 이용한 실험 결과는 EEG 기반의 개인 인증 및 인식의 가능성을 제시한다.

Authentication Method using Multiple Biometric Information in FIDO Environment (FIDO 환경에서 다중 생체정보를 이용한 인증 방법)

  • Chae, Cheol-Joo;Cho, Han-Jin;Jung, Hyun Mi
    • Journal of Digital Convergence
    • /
    • v.16 no.1
    • /
    • pp.159-164
    • /
    • 2018
  • Biometric information does not need to be stored separately, and there is no risk of loss and no theft. For this reason, it has been attracting attention as an alternative authentication means for existing authentication means such as passwords and authorized certificates. However, there may be a privacy problem due to leakage of personal information stored in the server. To overcome these weaknesses, FIDO solved the problem of leakage of personal information on the server by using biometric information stored on the user device and authenticating. In this paper, we propose a multiple biometric authentication method that can be used in FIDO environment. In order to utilize multiple biometric information, fingerprints and EEG signals can be generated and used in FIDO system. The proposed method can solve the problem due to limitations of existing 2-factor authentication system by authentication using multiple biometric information.