• Title/Summary/Keyword: EEG Analysis

Search Result 887, Processing Time 0.029 seconds

A Selection of Optimal EEG Channel for Emotion Analysis According to Music Listening using Stochastic Variables (확률변수를 이용한 음악에 따른 감정분석에의 최적 EEG 채널 선택)

  • Byun, Sung-Woo;Lee, So-Min;Lee, Seok-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1598-1603
    • /
    • 2013
  • Recently, researches on analyzing relationship between the state of emotion and musical stimuli are increasing. In many previous works, data sets from all extracted channels are used for pattern classification. But these methods have problems in computational complexity and inaccuracy. This paper proposes a selection of optimal EEG channel to reflect the state of emotion efficiently according to music listening by analyzing stochastic feature vectors. This makes EEG pattern classification relatively simple by reducing the number of dataset to process.

Nonlinear and Independent Component Analysis of Eye Movements EEG (안구운동 EEG의 비선형 및 독립성분 분석)

  • 김응수;신동선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.189-192
    • /
    • 2001
  • 뇌 기능의 연구수단으로써 널리 사용되고 있는 뇌파(Electroencephalogram)는 측정시에 노이즈(noise)나 잡파(Artifacts)가 섞여서 측정되기 쉽다. 이러한 노이즈나 잡파들을 제거하기 위하여 미지의 혼합된 신호들을 분리하는데 적용되고 있는 통계적인 처리 방식인 독립성분분석(ICA) 알고리즘을 뇌파에 적용하여 그 결과를 알아보았다. 본 연구에서는 정상인의 안구운동(Eye Movement)상태의 뇌파 신호에 대해서 독립성분분석을 적용하여 안구운동과 관련된 잡파가 포함된 원래의 뇌파신호(Original EEG Signal)와 제거한 다음의 뇌파신호(Corrected EEG Signal)에 대하여 비선형 분석법을 사용하여 두 신호의 유의한 차이점을 밝히고, 분리된 독립 신호들의 해부학적 발생위치 및 분포를 추정하였다.

  • PDF

A Comparative Study on Classification Methods of Sleep Stages by Using EEG

  • Kim, Jinwoo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.113-123
    • /
    • 2014
  • Electrophysiological recordings are considered a reliable method of assessing a person's alertness. Sleep medicine is asked to offer objective methods to measure daytime alertness, tiredness and sleepiness. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in recognition of alertness level. In this paper, EEG signals have been analyzed using wavelet transform as well as discrete wavelet transform and classification using statistical classifiers such as euclidean and mahalanobis distance classifiers and a promising method SVM (Support Vector Machine). As a result of simulation, the average values of accuracies for the Linear Discriminant Analysis (LDA)-Quadratic, k-Nearest Neighbors (k-NN)-Euclidean, and Linear SVM were 48%, 34.2%, and 86%, respectively. The experimental results show that SVM classification method offer the better performance for reliable classification of the EEG signal in comparison with the other classification methods.

Comparison of evaluation methods for measuring pressure of compressionwear (컴프레션웨어의 압박감 측정 방법 비교 연구)

  • Park, Jee Hye;Chun, Jongsuk
    • The Research Journal of the Costume Culture
    • /
    • v.21 no.4
    • /
    • pp.535-545
    • /
    • 2013
  • The aim of this study was comparing measuring tools for detecting physical comfortness with variation of garment pressure. The measuring tools for detecting physical comfortness were EEG and survey questionnaire. Two low-pressure compressionwears and a commercial compressionwear (girdle) were tested. Results showed that the questionnaire survey well detected suffocation or motion comfortness. But it did not discrete the appropriate tightness of the compressionwears. The results of EEG analysis show that the absolute power of ${\alpha}$-wave value was elevated with the low-pressure compressionwears. It also showed lower stress value. The high-pressure compressionwear presented decreased absolute power of ${\alpha}$-wave value. It showed higher stress value. These results implicate that EEG can appropriatly indicate the change of physical comfortness of compressionwear. The appropriate tightness of compressionwear can be measured with EEG analysis rather than survey questionnaire.

The methodology on the application of EEG as a diagonostic measures in Korean Traditional Medicine (뇌파의 한의학적 진단 지표로의 활용 방안에 대한 연구초안)

  • Seo, Young-Hyo;Kim, Gyeong-Cheol;Kim, Bo-Kyung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.18 no.1
    • /
    • pp.37-61
    • /
    • 2007
  • Objective : By examining EEG status in Korean Traditional Medicine (KTM) from the viewpoint of 'form-qi theory(形氣論)', We wish to prepare for the fundamentals of applicability of KTM diagnoses to EEG. In addition, through reinterpretation of existing Western Medicine reports from the viewpoint of KTM, We tried to find out interrelationship between them. Method : In this paper, a methodology applicable to KTM diagnoses of EEG is presented from the EEG features in waveform characteristics, personalized diversity, and cognitive activity reflection. Results : Frequency bands are assigned to corresponding one of the eight trigrams in terms of yin/yang balance, which is analogous with EEG spectrum analysis mostly used in EEG quantification. The amplitude ratio of each EEG for each frequency band gives meaningful index numbers which can be used in EEG data interpretation, and every index number is named after the sixty four hexagrams. These approaches are adopted through both '4-band classification system and '6-band classification system', and applied to pre-existing reported EEG data obtained from normal adults. These analyses show that changes and distribution pattern in the index numbers are observed as a whole on both left-right line and front-back line connecting EEG measurement cephalic electrodes. And differences in distribution pattern of three index numbers deduced from '6-band classification system' are discussed according to constitution. Conclusion : The index numbers introduced here, which are the spectral power ratio for each EEG, are based on KTM yin/yang balance. These index numbers vary according to cephalic location, so its application in terms of traditional meridian theory is strongly expected. The index number distribution also shows different patterns according to constitution.

  • PDF

Simple Digital EEG System Utilizing Analog EEG Machine (아날로그 뇌파기를 응용한 간단한 디지털 뇌파 시스템)

  • Jung, Ki-Young;Kim, Jae-Moon;Jung, Man-Jae
    • Annals of Clinical Neurophysiology
    • /
    • v.2 no.1
    • /
    • pp.8-12
    • /
    • 2000
  • Purpose : The rapid development and wide popularity of Digital EEG(DEEG) is due to its convenience, accuracy and applicability for quantitative analysis. These advantages of DEEG make one hesitate to use analog EEG(AEEG). To assess the advantage of DEEG system utilizing AEEG(DAEEG) over conventional AEEG and the clinical applicability, a DAEEG system was developed and applied to animal model Methods : Sprague-Dawley rat as status epilepticus model were used for collecting the EEG data. After four epidural electrodes were inserted and connected to 8-channel analog EEG(Nihon-Kohden, Japan), continous. EEG monitoring via computer screen was done from two rats simultaneously. EEG signals through analog amplifier and filters were digitized at digital signal processor and stored in Windows-based pentium personal computer. Digital data were sampled at a rate of 200 Hz and 12 bit of resolution. Acquisition software was able to carry out 'real-time view, sensitivity control and event marking' during continuous EEG monitoring. Digital data were stored on hard disk and hacked-up on CD-ROM for off-line review. Review system consisted of off-line review, saving and printing out interesting segment and annotation function. Results: This DAEEG system could utilize most major functions of DEEG sufficiently while making a use of an AEEG. It was easy to monitor continuously compared to Conventional AEEG and to control sensitivity during ictal period. Marking the event such as a clinical seizure or drug injection was less favorable than AEEG due to slowed processing speed of digital processor and central processing unit. Reviewing EEG data was convenient, but paging speed was slow. Storage and management of data was handy and economical. Conclusion : Relatively simple digital EEG system utilizing AEEG can be set-up at n laboratory level. It may be possible to make an application for clinical purposes.

  • PDF

Detrended Fluctuation Analysis on Sleep EEG of Healthy Subjects (정상인 수면 뇌파 탈경향변동분석)

  • Shin, Hong-Beom;Jeong, Do-Un;Kim, Eui-Joong
    • Sleep Medicine and Psychophysiology
    • /
    • v.14 no.1
    • /
    • pp.42-48
    • /
    • 2007
  • Introduction: Detrended fluctuation analysis (DFA) is used as a way of studying nonlinearity of EEG. In this study, DFA is applied on sleep EEG of normal subjects to look into its nonlinearity in terms of EEG channels and sleep stages. Method: Twelve healthy young subjects (age:$23.8{\pm}2.5$ years old, male:female=7:5) have undergone nocturnal polysomnography (nPSG). EEG from nPSG was classified in terms of its channels and sleep stages and was analyzed by DFA. Scaling exponents (SEs) yielded by DFA were compared using linear mixed model analysis. Results: Scaling exponents (SEs) of sleep EEG were distributed around 1 showing long term temporal correlation and self-similarity. SE of C3 channel was bigger than that of O1 channel. As sleep stage progressed from stage 1 to slow wave sleep, SE increased accordingly. SE of stage REM sleep did not show significant difference when compared with that of stage 1 sleep. Conclusion: SEs of Normal sleep EEG showed nonlinear characteristic with scale-free fluctuation, long-range temporal correlation, self-similarity and self-organized criticality. SE from DFA differentiated sleep stages and EEG channels. It can be a useful tool in the research with sleep EEG.

  • PDF

Eyeball Movements Removal in EEG by Independent Component Analysis (독립성분분석에의한 뇌파 안구운동 제거)

  • Shim, Yong-Soo;Choi, Seong-Ho;Lee, Il-Keun
    • Annals of Clinical Neurophysiology
    • /
    • v.3 no.1
    • /
    • pp.26-30
    • /
    • 2001
  • Purpose : Eyeball movement is one of the main artifacts in EEG. A new approach to the removal of these artifacts is presented using independent component analysis(ICA). This technique is a signal-processing algorithm to separate independent sources from unknown mixed signals. This study was performed to show that ICA is a useful method for the separation of EEG components with little data deformity. Methods : 12 sets of 10 sec digital EEG data including eye opening and closure were obtained using international 10~20 system scalp electrodes. ICA with 18 tracings of double banana bipolar montage was performed. Among obtained 18 independent components, two components, which were thought to be eyeball movements were removed. Other 16 components were reconstructed into original bipolar montage. Power spectral analysis of EEGs before and after ICA was done and compared statistically. Total 12 pairs of data were compared by visual inspection and relative power comparison. Results : Waveforms of each pair looked alike by visual inspection. Means of relative power before and after ICA were 29.16% vs. 28.27%, 12.12% vs. 12.41%, 10.55% vs. 10.52%, and 19.33% vs. 18. 33% for alpha, beta, theta, and delta, respectively. These values were statistically same before and after ICA. Conclusions : We found little data deformity after ICA and it was possible to isolate eyeball movements in EEG recordings. Many other components of EEG could be selectively separated using ICA.

  • PDF

Comparative Analysis of Sleep Stage according to Number of EEG Channels (뇌파 채널 개수 변화에 따른 수면단계 분석 비교)

  • Han, Heygyeong;Lee, Byung Mun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.140-147
    • /
    • 2021
  • EEG(electroencephalogram) are measured to accurately determine the level of sleep in various sleep examinations. In general, measurements are more accurate as the number of sensor channels increases. EEG can interfere with sleep by attaching electrodes to the skin when measuring. It is necessary for self sleep care to select the minimum number of EEG channels that take into account both the user's discomfort and the accuracy of the measurement data. In this paper, we proposed a sleep stage analysis model based on machine learning and conducted experiments for using from one channel to four channels. We obtained estimation accuracy for sleep stage as following 82.28% for one channel, 85.77% for two channels, 80.33% for three channels and 68.87% for four channels. Although the measurement location is limited, the results of this study compare the accuracy according to the number of channels and provide information on the selection of channel numbers in the EEG sleep analysis.

Computational electroencephalography analysis for characterizing brain networks

  • Sunwoo, Jun-Sang;Cha, Kwang Su;Jung, Ki-Young
    • Annals of Clinical Neurophysiology
    • /
    • v.22 no.2
    • /
    • pp.82-91
    • /
    • 2020
  • Electroencephalography (EEG) produces time-series data of neural oscillations in the brain, and is one of the most commonly used methods for investigating both normal brain functions and brain disorders. Quantitative EEG analysis enables identification of frequencies and brain activity that are activated or impaired. With studies on the structural and functional networks of the brain, the concept of the brain as a complex network has been fundamental to understand normal brain functions and the pathophysiology of various neurological disorders. Functional connectivity is a measure of neural synchrony in the brain network that refers to the statistical interdependency between neural oscillations over time. In this review, we first discuss the basic methods of EEG analysis, including preprocessing, spectral analysis, and functional-connectivity and graph-theory measures. We then review previous EEG studies of brain network characterization in several neurological disorders, including epilepsy, Alzheimer's disease, dementia with Lewy bodies, and idiopathic rapid eye movement sleep behavior disorder. Identifying the EEG-based network characteristics might improve the understanding of disease processes and aid the development of novel therapeutic approaches for various neurological disorders.