• 제목/요약/키워드: EEG Analysis

Search Result 887, Processing Time 0.028 seconds

A Study on the Relationship between Seizure Recurrence and EEG for Epilepsy (뇌전증 발작재발과 뇌파검사의 관계 연구)

  • Chae, Kyoung-Min;Sung, Hyun-Ho;Kim, Dae-Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.4
    • /
    • pp.388-393
    • /
    • 2016
  • Epilepsy, characterized by enduring the predisposition to generate epileptic seizures, was conceptually defined in 2005 as a disorder of the brain. According to the international league against epilepsy in 2014 that there is a high risk of recurrence within 10 years. The existence of interictal epileptiform discharges (IEDs) at the Electroencephalography (EEG) is an important risk factor for a possible recurrence of seizures, disproving that the seizures may increase. The purpose of this study was to analyze the correlation between recurrent seizures and epilepsy EEG findings in patients with IEDs, which was carried out to serve as the basis for the EEG to predict the prognosis of patients with epilepsy. This study included 432 adults older than 20 years of age who care for patients with epilepsy at Seoul National University Hospital, between June 2007 and December 2010. The results showed no difference between men and women in the EEG epilepsy disease, but there was a difference between various age groups. Correlation analysis showed a negative correlation between recurrence of seizures and age; it showed a positive correlation between recurrence and IEDs. In addition, age was associated with a predictive power of 10.9% and IEDs showed a predictive power of 15% on recurrent seizures. Therefore, EEG is considered as a very important test in epilepsy diagnosis. Therefore, further studies are necessary on the relationship between seizure recurrence and EEG.

Spectral Perturbation of Theta and Alpha Wave for the Affective Auditory Stimuli (청각자극에 따른 세타파와 알파파의 스펙트럼적 반응)

  • Du, Ruoyu;Lee, Hyo Jong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.10
    • /
    • pp.451-456
    • /
    • 2014
  • The correlations between electroencephalographic (EEG) spectral power and emotional responses during affective sound clip listening are important parameters. Hemispheric asymmetry in prefrontal activation have been proposed in two decades ago, as measured by power value, is related to reactivity to affectively pleasure audio stimuli. In this study, we designed an emotional audio stimulus experiment in order to verify frontal EEG asymmetry by analyzing Event-related Spectral Perturbation (ERSP) results. Thirty healthy college male students volunteered the stimulus experiment with the standard IADS(International Affective Digital Sounds) clips. These affective sound clips are classified in three emotion states, high pleasure-high arousal (happy), middle pleasure-low arousal (neutral) and low pleasure-high arousal (fear). The analysis of the data was performed in both theta (4-8Hz) and alpha (8-13Hz) bands. ERSP maps in the alpha band revealed that there are the stronger power responses of high pleasure (happy) in the right frontal lobe, while the stronger power responses of middle-low pleasure (neutral and fear) in the left frontal lobe. Moreover, ERSP maps in the theta band revealed that there are the stronger power responses of high arousal (fear and happy) in the left pre-frontal lobe, while the stronger responses of low arousal (neutral) in the right pre-frontal lobe. However, the high pleasure emotions (happy) can elicit greater relative right EEG activity, while the low and middle pleasure emotions (fear and neutral) can elicit the greater relative left EEG activity. Additionally, the most differences of theta band have been found out in the medial frontal lobe, which is proved as the frontal midline theta. And there are the strongest responses of happy sounds in the alpha band around the whole frontal regions. These results are well suited for emotion recognition, and provide the evidences that theta and alpha powers may have the more important role in the emotion processing than previously believed.

The Determination of the Duration of Electroconvulsive Therapy-Induced Seizure Using Local Standard Deviation of the Electroencephalogram Signal and the Changes of the RR Interval of Electrocardiogram

  • Kim, Eun Young;Yoo, Cheol Seung;Jung, Dong Chung;Yi, Sang Hoon;Chung, In-Won;Kim, Yong Sik;Ahn, Yong Min
    • Korean Journal of Biological Psychiatry
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Objectives In electroconvulsive therapy (ECT) research and practice, the precise determination of seizure duration is important in the evaluation of clinical relevance of the ECT-induced seizure. In this study, we have developed computerized algorithms to assess the duration of ECT-induced seizure. Methods Subjects included 5 males and 6 females, with the mean age of 33.1 years. Total 55 ECT sessions were included in the analysis. We analyzed the standard deviation of a finite block of electroencephalography (EEG) data and the change in the local slope of RR intervals in electrocardiography (ECG) signals during ECT-induced seizure. And then, we compared the calculated seizure durations from EEG recording (EEG algorithm) and ECG recording (ECG algorithm) with values determined by consensus of clinicians based on the recorded EEG (EEG consensus), as a gold standard criterion, in order to testify the computational validity of our algorithms. Results The mean seizure durations calculated by each method were not significantly different in sessions with abrupt flattened postictal suppression and in sessions with non-abrupt flattened postictal suppression. The intraclass correlation coefficients (95% confidence interval) of the three methods (EEG algorithm, ECG algorithm, EEG consensus) were significant in the total sessions [0.79 (0.70-0.86)], the abrupt flattened postictal suppression sessions [0.84 (0.74-0.91)], and the non-abrupt flattened postictal suppression sessions [0.67 (0.45-0.84)]. Correlations between three methods were also statistically significant, regardless of abruptness of transition. Conclusions Our proposed algorithms could reliably measure the duration of ECT-induced seizure, even in sessions with non-abrupt transitions to flat postictal suppression, in which it is typically difficult to determine the seizure duration.

A Comparative Study of the Differences among PC9, TE3, PC5 and TE1 and Their Effects on the EEG (심포경(心包經)과 삼초경(三焦經)의 목혈(木穴)과 금혈(金穴)자침이 뇌파에 미치는 영향 비교연구)

  • Choi, Woo-Jin;Lee, Seung-Gi;Park, Kyung-Mo
    • Korean Journal of Acupuncture
    • /
    • v.26 no.2
    • /
    • pp.15-25
    • /
    • 2009
  • Objective: This paper aimed to understand influences on EEG conducting acupuncture stimulation, by comparing the changes in the acupoints on the body before and after normal people are treated with acupuncture at PC9 and TE3, which are referred to as Wood points(木穴), and PC5 and TE1, which are referred to as the Metal points(金穴) among the five shu points of Yin pericardium Meridian and Yang Triple Energizer Meridian. Methods: The study was performed on 30 healthy female volunteers in their 20's. EEG was measured for 5 minutes before acupuncture stimulation was conducted on PC9, TE3, PC5 and TE1. During 20 minutes of acupuncture treatment, the same items were continuously measured to find out whether there were any changes in them, and they were measured for 5 minutes after removing the acupuncture needles in order to implement a comparative analysis. Results: Comparision of EEG data before and after the treatment at PC9 shows no significant differences in all wave. Compared with the pre-acupuncture period at TE3, $\delta-\theta$ wave decreased significantly (P<0.05) during the acupuncture stimulation periods. Compared with the pre-acupuncture period at PC5, $\delta-\theta$ wave and high $\alpha$ wave increased significantly (P<0.05) during the acupuncture stimulation periods. And Mid $\beta$ wave and high $\beta$ wave decreased significantly (P<0.05) during the acupuncture periods and the post acupuncture periods. Compared with the Pre-acupuncture period at TE1, $\delta-\theta$ wave, $\theta$ wave and high $\alpha$ wave increased significantly (P<0.05) during the acupuncture stimulation periods. And Low $\beta$ wave decreased significantly (P<0.05) during the acupuncture periods. Conclusion: When acupuncture stimulation was performed on PC9 and TE3, referred to as the "Wood points", brain waves were stabled, while when acupuncture was performed on PC5 and TE1, called the "Metal points", a brain was waked. From the findings of this study, we hypothesize that the wood properties, from which growing starts in all things, are related with fast waves of EEG, and the metal properties, which stabilize and converge in all things, are related with slow waves of EEG.

  • PDF

Comparison of Brain Connectivity in Mental Practice and Physical Performance of Bilateral Upper Extremity Function in a Healthy Adult: A Case Study (건강한 성인의 양측상지기능의 상상훈련과 신체적 수행의 대뇌 연결성 비교: 사례 연구)

  • Jeong, Eun-Hwa;Kim, Hee
    • Therapeutic Science for Rehabilitation
    • /
    • v.8 no.1
    • /
    • pp.41-50
    • /
    • 2019
  • Objective: The purpose of this study was to investigate whether there is a difference in the brain connectivity in mental practice and physical performance of training bilateral upper extremity function. Method: The subject performed activities involving mental tasks and physical exercise for bilateral upper extremity functioning during each phase of EEG measurements. The subject performed a symmetrical task(lifting a box and placing it back) that involved moving both arms at the same time and an asymmetrical task(opening and closing a bottle cap) in order to perform functional tasks. EEG electrodes were attached to Fp1, Fp2, F3, F4, T3, T4, P3, and P4. Data analysis was performed using Cross-Line Mapping for correlational analyses between EEG electrode pairs. Conclusion: This study found that the brain connectivity patterns of symmetrical and asymmetric upper extremity tasks have similar patterns for the motor and sensory area, and that the correlation of the physical practice is generally higher than that of the mental practice.

qEEG Measures of Attentional and Memory Network Functions in Medical Students: Novel Targets for Pharmacopuncture to Improve Cognition and Academic Performance

  • Gorantla, Vasavi R.;Bond, Vernon Jr.;Dorsey, James;Tedesco, Sarah;Kaur, Tanisha;Simpson, Matthew;Pemminati, Sudhakar;Millis, Richard M.
    • Journal of Pharmacopuncture
    • /
    • v.22 no.3
    • /
    • pp.166-170
    • /
    • 2019
  • Objectives: Attentional and memory functions are important aspects of neural plasticity that, theoretically, should be amenable to pharmacopuncture treatments. A previous study from our laboratory suggested that quantitative electroencephalographic (qEEG) measurements of theta/beta ratio (TBR), an index of attentional control, may be indicative of academic performance in a first-semester medical school course. The present study expands our prior report by extracting and analyzing data on frontal theta and beta asymmetries. We test the hypothesis that the amount of frontal theta and beta asymmetries (fTA, fBA), are correlated with TBR and academic performance, thereby providing novel targets for pharmacopuncture treatments to improve cognitive performance. Methods: Ten healthy male volunteers were subjected to 5-10 min of qEEG measurements under eyes-closed conditions. The qEEG measurements were performed 3 days before each of first two block examinations in anatomy-physiology, separated by five weeks. Amplitudes of the theta and beta waveforms, expressed in ${\mu}V$, were used to compute TBR, fTA and fBA. Significance of changes in theta and beta EEG wave amplitude was assessed by ANOVA with post-hoc t-testing. Correlations between TBR, fTA, fBA and the raw examination scores were evaluated by Pearson's product-moment coefficients and linear regression analysis. Results: fTA and fBA were found to be negatively correlated with TBR (P<0.03, P<0.05, respectively) and were positively correlated with the second examination score (P<0.03, P=0.1, respectively). Conclusion: Smaller fTA and fBA were associated with lower academic performance in the second of two first-semester medical school anatomy-physiology block examination. Future studies should determine whether these qEEG metrics are useful for monitoring changes associated with the brain's cognitive adaptations to academic challenges, for predicting academic performance and for targeting phamacopuncture treatments to improve cognitive performance.

A Study of EEG Analysis for the Moxibustion Stimulation (간접 뜸 자극에 관한 EEG 분석)

  • Park, Dong-Hee;Yoon, Dong-Eop;Jo, Bong-Kwan;Song, Hong-Bock;Kim, Young-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.170-174
    • /
    • 2007
  • Although research efforts for brain waves have prospered in medicine and engineering, acupuncture still has a long way to go regarding researches on brain waves analysis. Thus this study set out to analyze brain waves stimulated by indirect mugwort moxibustion, which was part of acupuncture techniques, and to investigate their correlations with the automatic nervous system. For the experiments, stimulation was given to Jungwan, Shingwol and Gwanwon, which were some of the spots on the body suitable for acupuncture, through indirect mugwort moxibustion. The subjects' brain waves were measured before the stimulation, during the stimulation, and one hour and two hours after the stimulation. The measurements were analyzed with Matlab 7.0 for FFT and frequency power spectrum. Then the ${\alpha}$, ${\beta}$, ${\delta}$, and ${\theta}$ waves were analyzed and examined for changes to the percentage of each frequency and to the amplitude of vibration according to the stages of stimulation. The EEG data of the entire brain were translated into FFT to analyze the percentage of the ${\alpha}$, ${\beta}$, ${\delta}$, and ${\theta}$ waves. As a result, the ${\alpha}$ waves recorded a double increase after the stimulation. The power spectrum analysis results of the entire brain decreased the ${\alpha}$ and ${\beta}$ waves dropping in the energy level, which suggested that the parasympathetic nerves were activated. When the results of the study were compared with those of the previous study, it's confirmed that indirect moxibustion stimulation could cause changes to the automatic nervous system and bring stability to those who were nervous or under stress due to the proportionate increase of the ${\alpha}$ waves.

  • PDF

Spectral Analysis of Resting EEG in Brain Compartments (휴지기 뇌파의 구역별 주파수 분석)

  • Lee, Migyung
    • Sleep Medicine and Psychophysiology
    • /
    • v.27 no.2
    • /
    • pp.67-76
    • /
    • 2020
  • Objectives: Brain maturation involves brain lateralization and asymmetry to achieve efficient information processing and cognitive controls. This study elucidates normal brain maturation change during the gap between ages 6-9 and age 14-17 using resting EEG. Methods: An EEG dataset was acquired from open source MIPDB (Multimodal Resource for Studying Information Processing in the Developing Brain). Ages 6-9 (n = 24) and ages 14-17 (n = 26) were selected for analysis, and subjects with psychiatric illness or EEG with severe noise were excluded. Finally, ages 6-9 (n = 14) and ages 14-17 (n = 11) were subjected to EEG analysis using EEGlab. A 120-sec length of resting EEG when eyes were closed was secured for analysis. Brain topography was compartmentalized into nine regions, best fitted with brain anatomical structure. Results: Absolute power of the delta band and theta band in ages 6-9 was greater than that of ages 14-17 in the whole brain, and, also is relative power of delta band in frontal compartment, which is same line with previous studies. The relative power of the beta band of ages 14-17 was greater than that of ages 6-9 in the whole brain. In asymmetry evaluation, relative power of the theta band in ages 14-17 showed greater power in the left than right frontal compartment; the opposite finding was noted in the parietal compartment. For the alpha band, a strong relative power distribution in the left parietal compartment was observed in ages 14-17. Absolute and relative power of the alpha band is distributed with hemispheric left lateralization in ages 14-17. Conclusion: During the gap period between ages 6-9 and ages 14-17, brain work becomes more complicated and sophisticated, and alpha band and beta band plays important roles in brain maturation in typically developing children.

Cerebral-perfusion Reserve after Carotid-artery Stenting: Relationship with Power Spectrum of Electroencephalography (경동맥스텐트삽입술 후의 뇌관류예비능: 뇌파파워스펙트럼과의 연관성)

  • Jeong, Da-hye;Jung, Seokwon;Kwak, Byeonggeun;Kim, Young-Soo;Kim, Soo-kyoung;Kwon, Oh-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.144-152
    • /
    • 2016
  • Carotid-artery stenosis may reduce cerebral perfusion, and affect cerebral neuronal activities. We examined the question of whether the recovery of cerebral-perfusion reserve after carotid-artery stenting (CAS) can affect the EEG power-spectrum. Nineteen candidates for CAS were initially recruited. Subtraction imaging of single photon emissary computerized tomography (SPECT) and an electroencephalogram (EEG) were taken twice, before and 1 month after CAS. At each time point, the EEGs were recorded before and after injection of acetazolamide (pre-ACZ EEG and post-ACZ EEG). Finally, 7 patients were enrolled after exclusion of incomplete studies. We obtained the spectral ratio (SR) of each hemisphere. SR was defined as the divided value of the power-spectrum sum of fast activities by that of slow activities. The power-spectrum values between hemispheres were compared using the inter-hemispheric index of spectral ratio (IHISR), and we examined the correlation between the power-spectrum and the cerebral-perfusion reserve. Cerebral-perfusion reserve improved after CAS on the stent side in 6 of 7 patients. In 3 patients with unilateral carotid-artery stenosis, CAS increased SR on the pre-ACZ EEGs, and IHISR on the post-ACZ EEGs. The increases of SR and IHISR were concordant with the increment of cerebral-perfusion reserve. In contrast, the results in the other patients with bilateral stenosis showed complex patterns. The SR of pre-ACZ EEGs and IHISR of post-ACZ EEGs may be useful electrophysiological markers for the blood-flow reserve after CAS in patients with unilateral carotid-artery stenosis, but not in those with bilateral stenosis.

Decoding Brain Patterns for Colored and Grayscale Images using Multivariate Pattern Analysis

  • Zafar, Raheel;Malik, Muhammad Noman;Hayat, Huma;Malik, Aamir Saeed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1543-1561
    • /
    • 2020
  • Taxonomy of human brain activity is a complicated rather challenging procedure. Due to its multifaceted aspects, including experiment design, stimuli selection and presentation of images other than feature extraction and selection techniques, foster its challenging nature. Although, researchers have focused various methods to create taxonomy of human brain activity, however use of multivariate pattern analysis (MVPA) for image recognition to catalog the human brain activities is scarce. Moreover, experiment design is a complex procedure and selection of image type, color and order is challenging too. Thus, this research bridge the gap by using MVPA to create taxonomy of human brain activity for different categories of images, both colored and gray scale. In this regard, experiment is conducted through EEG testing technique, with feature extraction, selection and classification approaches to collect data from prequalified criteria of 25 graduates of University Technology PETRONAS (UTP). These participants are shown both colored and gray scale images to record accuracy and reaction time. The results showed that colored images produces better end result in terms of accuracy and response time using wavelet transform, t-test and support vector machine. This research resulted that MVPA is a better approach for the analysis of EEG data as more useful information can be extracted from the brain using colored images. This research discusses a detail behavior of human brain based on the color and gray scale images for the specific and unique task. This research contributes to further improve the decoding of human brain with increased accuracy. Besides, such experiment settings can be implemented and contribute to other areas of medical, military, business, lie detection and many others.