• Title/Summary/Keyword: EEG 인증

Search Result 14, Processing Time 0.021 seconds

Development of a Biometric Authentication System Based on Electroencephalography (뇌파 기반 개인 인증 시스템 개발)

  • Choi, Ga-Young;Kim, Eun-Ji;Kang, Ye-Na;Park, Su-Bin;Park, Su-Jin;Choi, Soo-In;Hwang, Han-Jeong
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.43-47
    • /
    • 2018
  • Traditional electroencephalography (EEG)-based authentication systems generally use external stimuli that require user attention and relatively long time for authentication. The aim of this study is to investigate the feasibility of biometric authentication based on EEG without using any external stimuli. Seventeen subjects took part in the experiment and their EEGs were measured while repetitively closing and opening their eyes. For identifying each subject, we calculated inter- and intra-subject cross-correlation using changes in alpha activity (8-13 Hz) during eyes closed as compared to eyes open. In order to optimize the number of recording electrodes, we calculated authentication accuracy by progressively reducing the number of electrodes used in the analysis. Significant increase in alpha activity was observed for all subjects during eyes closed, focusing on occipital areas, and spatial patterns of changed alpha activity were considerably different between the subjects. A mean authentication accuracy of 92.45% was obtained, which was retained over 75% when using only 8 electrodes placed around occipital areas. Our results could demonstrate the feasibility of the proposed novel authentication method based on resting state EEGs.

Biometrics System Technology Trends Based on Biosignal (생체신호 기반 바이오인식 시스템 기술 동향)

  • Choi, Gyu-Ho;Moon, Hae-Min;Pan, Sung-Bum
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.381-391
    • /
    • 2017
  • Biometric technology is a technology for authenticating a user using the physical or behavioral features of the inherent characteristics of the individual. With the necessity and efficiency of the technology in the fields of finance, security, access control, medical welfare, inspection, and entertainment, the service range has been expanding. Biometrics using biometric information such as fingerprints and faces have been exposed to counterfeit and disguised threats and become a social problem. Recent studies using a bio-signal from the inside of the body other than the bio-information of the external body are being developed. This paper analyzes the recent research and technology of biometric systems using bio-signals, ECG, heart sounds, EEG, and EMG to present the skills needed for the development direction. In the future, utilizing the deep learning to build and analyze database to manage bio-signal based big data for the complex condition of individuals, biometrics technologies suitable for real time environment are expected to be researched.

Changes of Soil Properties through the Remediation Processes and Techniques for the Restoration of Remediated Soils (오염 토양 정화공정에 의한 토양의 특성 변화 및 정화토의 회복기술)

  • Lee, Sang-Woo;Lee, Woo-Chun;Lee, Sang-Hun;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.441-477
    • /
    • 2020
  • There have been raised other environmental issues related to remediated soils piled up in numerous carry-out processing facilities because a considerable quantity of them have been produced every year, but most of them have not been relevantly reused or recycled. Thus, this article reports the trend of researches on the development of techniques to restore the quality of remediated soils to activate their reuse and recycling. Firstly, the tendency of change in soil properties through remediation processes was looked over, and then the degradation of soil quality was characterized according to the type of remediation processes. Besides, the direction of policy to promote the reuse and recycling of remediated soils was introduced, and finally, the future works needed were suggested. This article was prepared based on the results of the survey of domestic and foreign literature. A number of literature were reviewed to scrutinize the change of soil properties due to remediation processes and diverse techniques for the amendment and restoration of remediated soils. Furthermore, the policies related to the reuse and recycling of remediated soils were arranged with the reference of the first and second versions of the Soil Conservation Master Plan of Korea. The literature survey focused on three kinds of remediation technologies, such as land farming, soil washing, and thermal desorption, which were most frequently used so far in Korea. The results indicate that the tendency of change in soil properties was significantly different depending on the type of remediation processes applied, and the degradation characteristics of soil quality were also totally different between them. The soil amendment and restoration can be categorized as three techniques depending on the type of substances used, such as inorganic, organic, and biological ones. Diverse individual materials have been used, and the soil properties improved or enhanced were dependent on the type of specific materials utilized. However, few studies on the restoration of soil qualities degraded during the remediation processes have not been carried out so far. The second Soil Conservation Master Plan states the quality certification and target management system of remediated soils, and it is expected that their reuse and recycling will be facilitated hereafter. With the consideration of the type of remediation processes implemented and public utility, the restoration technologies of remediated soils should be developed for the vitalization of their reuse and recycling. Besides, practical and specific measures should be taken to support the policy specified in the second Soil Conservation Master Plan and to promote reuse/recycling of remediated soils.

Calibration of δ13C values of CO2 gas with different concentrations in the analysis with Laser Absorption Spectrometry (레이저흡광분석기(Laser Absorption Spectrometry)를 이용한 CO2가스의 탄소안정동위원소비 보정식 산출)

  • Jeong, Taeyang;Woo, Nam C.;Shin, Woo-Jin;Bong, Yeon-Sik;Choi, Seunghyun;Kim, Youn-Tae
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.537-544
    • /
    • 2017
  • Stable carbon isotope ratio of carbon dioxide (${\delta}^{13}C_{CO2}$) is used as an important indicator in the researches for global climate change and carbon capture and sequestration technology. The ${\delta}^{13}C$ value has been usually analyzed with Isotope Ratio Mass Spectrometer (IRMS). Recently, the use of Laser Absorption Spectrometry (LAS) is increasing because of the cost efficiency and field applicability. The purpose of this study was to suggest practical procedures to prepare laboratory reference gases for ${\delta}^{13}C_{CO2}$ analysis using LAS. $CO_2$ gas was adjusted to have the concentrations within the analytical range. Then, the concentration of $CO_2$ was assessed in a lab approved by the Korea Laboratory Accreditation Scheme and the ${\delta}^{13}C_{CO2}$ value was measured by IRMS. When the instrument ran over 12 hours, the ${\delta}^{13}C$ values were drifted up to ${\pm}10$‰ if the concentration of $CO_2$ was shifted up to 1.0% of relative standard deviation. Therefore, periodical investigation of analytical suitability and correction should be conducted. Because ${\delta}^{13}C_{CO2}$ showed the dependency on $CO_2$ concentration, we suggested the equation for calibrating the concentration effect. After calibration, ${\delta}^{13}C_{CO2}$ was well matched with the result of IRMS within ${\pm}0.52$‰.