• Title/Summary/Keyword: EEG 인증

Search Result 14, Processing Time 0.029 seconds

User Authentication Method using EEG Signal in FIDO System (FIDO 시스템에서 EEG 신호를 이용한 사용자 인증 방법)

  • Kim, Yong-Ki;Chae, Cheol-Joo;Cho, Han-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.465-471
    • /
    • 2018
  • Recently, biometric technology has begun to be used as a fusion of IT technology and financial system. Using this biometric technology, FIDO(Fast Identity Online) technology, Samsung and Apple started Samsung Pay and Apple Pay service. FIDO authentication technology replaces existing authentication methods such as passwords. Among the biometric technologies, fingerprint recognition technology is attracting attention because it can minimize the device and user rejection at a relatively low price. However, fingerprint information has a limited number of users and it can not be reused if fingerprint information is leaked by an external attacker. Therefore, in this paper, we propose a method to authenticate a user using EEG signal which is one of biometrics technologies. W propose a method to use EEG signal measurement value in FIDO system by using convenience channel by using short channel EEG device. And propose a method to utilize EEG signal when the user recognizes a specific entity by measuring the EEG signal before and after recognizing a specific entity.

An Incremental Elimination Method of EEG Samples Collected by Single-Channel EEG Measurement Device for Practical Brainwave-Based User Authentication (실용적 뇌파 기반 사용자 인증을 위한 단일 채널 EEG 측정 장비를 통해 수집된 EEG 샘플의 점진적 제거 방법)

  • Ko, Han-Gyu;Cho, Jin-Man;Choi, Daeseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.383-395
    • /
    • 2017
  • Brainwave-based user authentication technology has advantages such as changeability, shoulder-surfing resistance, and etc. comparing with conventional biometric authentications, fingerprint recognition for instance which are widely used for smart phone and finance user authentication. Despite these advantages, brainwave-based authentication technology has not been used in practice because of the price for EEG (electroencephalography) collecting devices and inconvenience to use those devices. However, according to the development of simple and convenient EEG collecting devices which are portable and communicative by the recent advances in hardware technology, relevant researches have been actively performed. However, according to the experiment based on EEG samples collected by using a single-channel EEG measurement device which is the most simplified one, the authentication accuracy decreases as the number of channels to measure and collect EEG decreases. Therefore, in this paper, we analyze technical problems that need to be solved for practical use of brainwave-based use authentication and propose an incremental elimination method of collected EEG samples for each user to consist a set of EEG samples which are effective to authentication users.

EEG-based Person Authentication using Face-Specific Self Representation (본인의 얼굴 영상에 반응하는 뇌전도 신호 기반 개인 인증)

  • Yeom, Seul-Ki;Suk, Heung-Il;Lee, Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.379-382
    • /
    • 2011
  • 인터넷 뱅킹, 전자 상거래 등의 도래에 따라 생체 인식이 중요한 이슈가 되고 있다. 이에 따라 뇌전도(Electro Encephalo Graphy: EEG)로 측정되는 생체 신호를 통하여 기존 생체 인식의 단점을 보완하는 새로운 연구가 시도되고 있다. 본 논문에서는 인간 본인의 얼굴 사진에 특별한 반응을 보인다는 신경 생리학적 지식을 기반으로 한, 새로운 개인 인증 기술을 제안한다. 구체적으로는 뇌 신호 반응 유도를 위한 시각 자극 제시 패러다임의 설계 EEG신호의 특징을 추출을 위한 개인-의존적인 시간 영역 및 채널 선택 및 효율적인 분류기 설계 방법을 제안한다. 제안한 방법을 이용한 실험 결과는 EEG 기반의 개인 인증 및 인식의 가능성을 제시한다.

EEG Signal Classification based on SVM Algorithm (SVM(Support Vector Machine) 알고리즘 기반의 EEG(Electroencephalogram) 신호 분류)

  • Rhee, Sang-Won;Cho, Han-Jin;Chae, Cheol-Joo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.17-22
    • /
    • 2020
  • In this paper, we measured the user's EEG signal and classified the EEG signal using the Support Vector Machine algorithm and measured the accuracy of the signal. An experiment was conducted to measure the user's EEG signals by separating men and women, and a single channel EEG device was used for EEG signal measurements. The results of measuring users' EEG signals using EEG devices were analyzed using R. In addition, data in the study was predicted using a 80:20 ratio between training data and test data by applying a combination of specific vectors with the highest classifying performance of the SVM, and thus the predicted accuracy of 93.2% of the recognition rate. This paper suggested that the user's EEG signal could be recognized at about 93.2 percent, and that it can be performed only by simple linear classification of the SVM algorithm, which can be used variously for biometrics using EEG signals.

Analysis of EEG Reproducibility for Personal Authentication (개인인증을 위한 뇌파의 재현성에 대한 분석)

  • Jung, Yu-Ra;Jang, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.527-532
    • /
    • 2020
  • In this paper, we presented the results of analysis through EEG measurement for the purpose of checking the frequency band of EEG signals that can be used for personal authentication. The measurement status was divided into the open-eye state and the closed-eye state depending on the presence or absence of an optical task. The data measured in the EEG experiments was divided into seven frequency bands : delta waves, theta waves, alpha waves, SMR waves, mid-beta waves, beta waves and gamma waves to identify the frequency band with the smallest power fluctuation over time. In our results, there was no significant difference between the open-eye state and the closed-eye state, and the SMR waves and mid-beta waves related to human concentration had the smallest fluctuation in power over time, and were a highly reproducible frequency band.

An EEG Encryption Scheme for Authentication System based on Brain Wave (뇌파 기반의 인증시스템을 위한 EEG 암호화 기법)

  • Kim, Jung-Sook;Chung, Jang-Young
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.330-338
    • /
    • 2015
  • Gradually increasing the value of the technology, the techniques of the various security systems to protect the core technology have been developed. The proposed security scheme, which uses both a Password and the various devices, is always open by malicious user. In order to solve that problem, the biometric authentication systems are introduced but they have a problem which is the secondary damage to the user. So, the authentication methods using EEG(Electroencephalography) signals were developed. However, the size of EEG signals is big and it cause a lot of problems for the real-time authentication. And the encryption method is necessary. In this paper, we proposed an efficient real-time authentication system applied encryption scheme with junk data using chaos map on the EEG signals.

A Study on Development of EEG-Based Password System Fit for Lifecaretainment (라이프케어테인먼트에 적합한 뇌파 기반 패스워드 시스템 개발에 관한 연구)

  • Yang, Gi-Chul
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.8
    • /
    • pp.525-530
    • /
    • 2019
  • Electroencephalography(EEG) studies that have been in clinical research since the discovery of brainwave have recently been developed into brain-computer interface studies. Currently, research is underway to manipulate robot arms and drones by analyzing brainwave. However, resolution and reliability of EEG information is still limited. Therefore, it is required to develop various technologies necessary for measuring and interpreting brainwave more accurately. Pioneering new applications with these technologies is also important. In this paper, we propose development of a personal authentication system fit for lifecaretainment based on EEG. The proposed system guarantees the resolution and reliability of EEG information by using the Electrooculogram and Electromyogram(EMG) together with EEG.

무자각 사용자 인증을 위한 실용적 뇌파인증 기술 - EEG 기반 인증기술 동향 및 요구사항 분석 -

  • CHO, JIN-MAN;Ko, Han-Gyu;Choi, Daeseon
    • Review of KIISC
    • /
    • v.27 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • 본 논문에서는 생체인식 인증의 한 가지 방법인 뇌파 기반 사용자 인증기술의 최신 기술동향에 대해 고찰하고 해당기술의 실용화를 위해 해결해야 할 기술적 문제점과 요구사항에 대해 분석한다. 뇌파 기반 사용자 인증기술은 최근에 스마트폰, 금융 등 다양한 분야에서 사용되고 있는 기존의 생체인식 인증기술과 비교해볼 때 가변성, 유출 저항성 등의 장점이 있지만, 사용자들로부터 뇌파를 수집하기 위해 필요한 장비의 경제성, 뇌파 수집 행위의 사용자 편의성, 현재까지 발표된 뇌파 기반 사용자 식별 기법들의 안정성 등이 개선되어야 하는 것으로 파악된다. 이와 관련하여 뇌파 측정 장비들의 발전 동향을 살펴보고 해당 장비들의 간소화와 인증정확도 간 트레이드오프(trade-off)와 최신 기계학습 및 인공지능 기술들을 활용한 뇌파 기반 사용자 식별 기법들의 안정성을 위해 해결되어야 할 뇌파의 시간차 문제 및 이에 따른 인증정확도 저하 문제를 규명하고 분석한다.

Design and Implementation of User Identification Model based on Deep Learning Using EEG (뇌파신호를 활용한 Deep Learning 기반 사용자 식별 모델 설계 및 구현)

  • Hong, Bo-Seon;Lee, Jong-Hun;Pyo, In-Seon;Masanori, Yamamoto;Kim, Jeong-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.764-767
    • /
    • 2017
  • 최근 개인정보 활용에서 보안 및 인증에 대한 중요성이 대두되고 있으며, IoT 기반의 바이오 디바이스를 접목한 생체인식 기술은 사용자의 식별과 인증을 위해 다양한 분야에서 많은 발전을 보이고 있다. 본 논문에서는 대규모 뇌파신호를 효과적으로 처리하기 위한 방안으로 Deep Learning 기법을 적용한 뇌파 데이터 식별과 이를 분석한 사용자 인증이 가능한 스마트 자물쇠 모델을 제안한다. 제안한 뇌파신호를 활용한 Deep Learning 기반 사용자 식별 및 인증 모델은 보안 시스템에서의 활용뿐만 아니라 다양한 사물인터넷과 접목 시킬 수 있으며, 뇌성마비 또는 신체 활동이 제한적인 환자의 경우 일상생활의 제약을 줄이고 삶의 질적 향상에 도움이 될 것으로 기대한다.

Authentication Method using Multiple Biometric Information in FIDO Environment (FIDO 환경에서 다중 생체정보를 이용한 인증 방법)

  • Chae, Cheol-Joo;Cho, Han-Jin;Jung, Hyun Mi
    • Journal of Digital Convergence
    • /
    • v.16 no.1
    • /
    • pp.159-164
    • /
    • 2018
  • Biometric information does not need to be stored separately, and there is no risk of loss and no theft. For this reason, it has been attracting attention as an alternative authentication means for existing authentication means such as passwords and authorized certificates. However, there may be a privacy problem due to leakage of personal information stored in the server. To overcome these weaknesses, FIDO solved the problem of leakage of personal information on the server by using biometric information stored on the user device and authenticating. In this paper, we propose a multiple biometric authentication method that can be used in FIDO environment. In order to utilize multiple biometric information, fingerprints and EEG signals can be generated and used in FIDO system. The proposed method can solve the problem due to limitations of existing 2-factor authentication system by authentication using multiple biometric information.