Journal of the Korean Institute of Intelligent Systems
/
v.12
no.4
/
pp.366-372
/
2002
EEG is the electrical signal, which is occurred during information processing in the brain. These EEG signal are measured by non-invasive method. EEG has many useful information for brain activity, but artifacts which are included in EEG prevents EEG analysis, so many efforts are devoted to remove these artifacts in EEG. However, this study is going to analysis the feature of the EEG mixed with artifacts in forward-looking way, by using this way, we have found the possibility that is actually applicable to system such as control system. We have made feature difference after the linear as well as nonlinear analysis regarding EEG including typical artifacts, eye-blinking, eye rolling, muscle, and so forth.
Recent advancements in modern transportation have led to the active development of various biomedical signal and medical imaging technologies. Particularly, in the field of cognitive/neuroscience, the importance of electroencephalography (EEG) measurement and the development of accurate EEG measurement technology in moving vehicles represent a challenging area. This study aims to extensively investigate and analyze the trends in technology research utilizing EEG during driving. For this purpose, the Scopus database was used to explore EEG-related research conducted since the year 2000, resulting in the selection of about 40 papers. This paper sheds light on the current trends and future directions in signal processing technology, EEG measurement device development, and in-vehicle driver state monitoring technology. Additionally, a ultra compact 32-channel EEG measurement module was designed. By implementing it simply and measuring and analyzing EEG signals, in-vehicle EEG module's functionality was checked. This research anticipates that the technology for measuring and analyzing biometric signals during driving will contribute to driver care and health monitoring in the era of autonomous vehicles.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.4
/
pp.304-309
/
2000
For understanding the information processing in human brain, we analyze the EEG, a spontaneous electric activity on the scalp of the human. In this paper, we used the mutual information to analyze EEG. The mutual information is used to show the stochastic correlation between signals which are generated in the communication and information theory. The used EEG is evoked by each auditory stimulus in positive and negative emotional states. As a result, we found thet there is some difference at the mutual information in each emotional state.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.05a
/
pp.179-182
/
2001
인체 활동에 따라 우리 몸에는 다양한 전기적 생체신호가 발생하며 특히 뇌의 활동에 따라 발생되는 뇌파(EEG)는 비침습적 방법으로 측정될 수 있는 장점 때문에 뇌기능 연구 및 임상 등에서 널리 사용되어지고 있다. 또한 임상에서는 주로 뇌 신경계 질환환자의 병인 규명 및 기전 연구를 위하여 뇌파가 사용되어지고 있다. 최근에는 컴퓨터 발달에 따라 카오스, 비선형 이론 등의 다양한 방법으로 복잡한 시계열 신호인 뇌파를 분석하는 기법들이 개발되어 뇌파의 특징점을 찾아 임상에 활용하거나 뇌기능 연구에 적용하려는 연구가 진행되고 있다. 본 논문에서는 잡화(artifact)가 섞여 있는 뇌파신호 및 artifact가 제거된 다음 재구성된 뇌파신호(reconstructed EEG signal), 그리고 독립성분으로 분리된 각각의 신호에 대하여 특징점을 찾기 위하여 비선형 및 선형 분석을 실시하여 유의한 차이점을 밝혔다.
뇌파, 즉 뇌전도는 뇌에서 일어나는 전위의 변화를 기록하는 것이다. 이는 두개골의 두피에 전극을 부착하거나 뇌 표면 또는 뇌속에 전극을 삽입하여 기록할 수 있다. 종래에는 뇌파는 활동전위의 동기화와 통합의 결과로서, 어떤 피질 영역에서의 뉴론의 활동을 직접 반영하는 것이라고 생각되어 왔다. 그러나 EEG 활동에서 상당한 부분은 뉴론의 막전위에 기인하며, 특히 느린 시냅스 후 전위의 가중에 기인한다고 할 수 있다. 그렇지만 활동전위가 EEG에 전혀 공헌하지 않는 것은 아니다. EEG는 그 파형에 따라 동기화 또는 비동기화로 나눌 수 있는데, 그 근간을 이루는 뇌 구조물은 상이하다. 그리고 피질의 활동에서 유래한 EEG는 피질하 구조물에 의해서도 영향을 받는다. 이러한 EEG를 활용한 연구는 인간 정신 과정을 이해하는데 이바지하는 바가 클 것이다.
In this study, we carried out a study for implementation of the pre-amplifier and the digital signal processing part for the potable EEG biofeedback system. As we consider characteristics of the EEG signal, we designed the pre-amplifier to obtain the EEG signal to be reduced noise signal. Because the EEG signal include EOG, EMG, ECG signals etc, it is difficult to analyze of the EEG signal. Therefore, we developed DSP board and operation program which was embed the LMS adaptive filter algorithm and operate with the pre-amplifier in the real time. The simulation signal and pure EEG signal is used in the experiment. As the result, we confirmed good efficiency of developed system and possibility of application to the portable EEG biofeedback system.
In this study, we attempted in preparing high precision EEG measuring equipment. To measure EEG in high efficiency, pre-amplifier should get high performance common mode rejection ratio. Also, separation amplifier is essential to eliminate common line noise. So, our study were pointed at elevating the efficiency of eliminating noise, user safety and low noise characteristics. Prepared high precision pre-amplifier for EEG was A/D converted to automatically classify $\alpha$ wave, $\beta$ wave and $\theta$ wave. And converted data were Fast Fourier Transformed with real time DSP (Digital Signal Processing). Clinical demonstrations were carried out with healthy students, aged between 20 to 26 who has no histories of illness. To recognize the efficiency of the EEG, prepared EEG were used with MS equipment in low stimulated state and high stimulated state. Then, we studied at the effect of sensitivity on brain wave. From this study, it is known that our EEG equipment is efficient in sensitivity evaluation and suitable stimulations for each psychological state are required.
This paper confirms whether the movement or specific operation of the muscles in the process of transferring a person from the brain can find a signal showing an essential feature of a certain part of the brain. As a rule, the occurrence of EEG(Electroencephalogram) changes when a signal is received from a specific action or from an induced action. These signals are very vague and difficult to distinguish from the naked eye. Therefore, it is necessary to define a signal for analysis before classification. The EEG form can be divided into the alpha, beta, delta, theta and gamma regions in the frequency ranges. The specific size of these signals does not reflect the exact behavior or intention, since the band or energy difference of the activated frequencies varies depending on the EEG measurement domain. However, if different actions are performed in a specific method, it is possible to classify the movement based on EEG activity and to determine the EEG tendency affecting the movement. Therefore, in this article, we first study the EEG expression pattern based on the activation of the left and right biceps EMG, and then we determine whether there is a significant difference between the EEG due to the activation of the left and right muscles through EEG. If we can find the EEG classification criteria in accordance with the EMG activation, it can help to understand the form of the transmitted signal in the process of transmitting signals from the brain to each muscle. In addition, we can use a lot of unknown EEG information through more complex types of brain signal generation in the future.
Psychophysiologists are often interested in the EEG signals that accompany certain psychological events. When one is interested in a time series of event-related changes in EEG, one focuses on examining how the waveforms recorded at individual electrode sites vary over time across one or more experimental conditions. This is an analysis of event-related potentials (ERPs). In addition to such a classical EEG analysis in the time domain, the EEG measures can be investigated in the frequency domain. Moreover, it has been demonstrated that spectral analyses can often yield significant insight into the functional cognitive correlations of the signals. Therefore, this review paper tries to summarize essential concepts (e.g. phase-locking) and conventional methods (e.g. wavelet transformation) for understanding spectral analyses of brain oscillatory activity. Phase-coherence is also introduced in relation to functional connectivity of the brain.
Proceedings of the Korea Contents Association Conference
/
2018.05a
/
pp.155-156
/
2018
뇌파 신호 등 생체 정보를 이용하여 상호작용적인 예술 콘텐츠를 설계 및 개발하는 방식에 대한 관심이 높아지고 있다. 이 논문은 EEG로 뇌파 신호를 수집하여 인공지능 기법으로 처리한 후에 사용자와 매체가 상호작용하는 콘텐츠 개발의 사례를 소개한다. 게임 등의 엔터테인먼트 콘텐츠와 미디어아트 등으로 연계되는 방식을 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.