• Title/Summary/Keyword: EDM States

Search Result 3, Processing Time 0.017 seconds

Experimental Study on Characteristics of Dry Wire Electrical Discharge Machining (EDM) Process (건성 와이어방전가공 프로세스 특성에 관한 실험적 연구)

  • Lee, Sang-Won;Kim, Hong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.11-17
    • /
    • 2010
  • This study investigates the non-traditional manufacturing process of dry wire electrical discharge machining (EDM) in which liquid dielectric is replaced by a gaseous medium. Wire EDM experiments of thin workpieces were conducted both in wet and dry EDM conditions to examine the effects of spark cycle (T), spark on-time ($T_{on}$), thickness of work pieces, and work material on machining performance. The material removal rate (MRR) in the dry wire EDM case was much lower than that in the wet wire EDM case. In addition, the thickness of workpiece and work-material were found to be critical factors influencing the MRR for dry EDM process. The relative ratios of spark, arc and short circuit were also calculated and compared to examine the effectiveness of processes of dry and wet wire EDM.

Characteristics in W-EDM of Tungsten Carbide (초경합금의 와이어 방전가공에 의한 특성)

  • 맹민재
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.7-13
    • /
    • 2001
  • Wire electrical discharge machining experiments in conducted to investigate characteristics of acoustic emission (AE) and electrical discharge energy due to current peak (I$_{p}$), pulse on time($\tau$/on/). The AE signals are obtained with a sensor attached to workpiece side. Machining states are identified with scanning electron microscopy and residual stress analyzer. It is demonstrated that the residual stress provide reliable informations about the machining states. Moreover, machining states can be detected successfully using both the residual stress and AE count rate.e.

  • PDF

Diagnosis and Control of Machining States in Micro-Drilling for Productivity Enhancement (미세구멍 가공의 생산성 향상을 위한 상태식별 및 제어)

  • 정만실;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.117-129
    • /
    • 1998
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratio larger than 10) is recently having more attention in a wide spectrum of precision production industries. Alternative methods such as EDM. laser drilling, etc. can sometimes replace the mechanical micro-hole drilling but are not acceptable in PCB manufacture because of the inferior hole quality and accuracy. The major difficulties in micro-hole drilling are related to small signal to noise ratios, wandering motions of the inlet stage, high aspect ratios, high temperatures and so forth. Of all the difficulties. the most undesirable one is the increase of drilling force as the drill proceeds deeper into the hole. This is caused mainly from the chip effects. Peck-drilling is thus widely used for deep hole drilling despite that it suffers from low productivity. In the paper, a method of cutting force regulation is proposed to achieve continuous drilling. A PD and a sliding mode control algorithms were implemented through controlling the spindle rotating frequency. Experimental results show that the sliding mode control reduces the nominal cutting force and the variation of the cutting force better than the PD control. The advantages of the regulation, such as increase of drill life, fast stabilization of a wandering motion, and the precise positioning of the hole are verified in experiment.

  • PDF