• Title/Summary/Keyword: EDM(Electric Discharge Machining

Search Result 58, Processing Time 0.025 seconds

Positioning of the high precision linear motion system based on the voice coil actuator (보이스코일 액튜에이터를 기반으로 한 고정밀 직선이송 시스템의 위치결정)

  • Lee, Jun-Woo;Kim, Byeong-Hee;Chang, In-Bae
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.9-14
    • /
    • 1999
  • The voice coil actuator uses the Lorentz force between the magnetic field of the permanent magnets and the electromagnets to the motions and positioning. The small size, light weight and fast dynamic response of the these type actuators lead to admit them in the micro-positioning apparatus of the micro-machining systems. In this paper, the linear motion voice coil actuator is developed for the driving and positioning the rotating electrode of the electric discharge machine (EDM). The analyzed and measured results for the actuator are compared and discussed.

  • PDF

Micro-EDM Feasibility and Material Properties of Hybrid Ti2AlC Ceramic Bulk Materials (하이브리드 Ti2AlC 세라믹 소결체의 재료특성 및 Micro-EDM 유용성 연구)

  • Jeong, Guk-Hyun;Kim, Kwang-Ho;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.301-306
    • /
    • 2014
  • Titanium alloys are extensively used in high-temperature applications due to their excellent high strength and corrosion resistance properties. However, titanium alloys are problematic because they tend to be extremely difficult-to-cut material. In this paper, the powder synthesis, spark plasma sintering (SPS), bulk material characteristics and machinability test of hybrid $Ti_2AlC$ ceramic bulk materials were systematically examined. The bulk samples mainly consisted of $Ti_2AlC$ materials with density close to theoretical value were synthesized by a SPS method. Random orientation and good crystallization of the $Ti_2AlC$ was observed at $1100^{\circ}C$ for 10 min under SPS sintering conditions. Scanning electron microscopy results indicated a homogeneous distribution and nano-laminated structure of $Ti_2AlC$ MAX phase. The hardness and electrical conductivity of $Ti_2AlC$ were higher than that of Ti 6242 alloy at sintering temperature of $1000^{\circ}C{\sim}1100^{\circ}C$. Consequently, the machinability of the hybrid $Ti_2AlC$ bulk materials is better than that of the Ti 6242 alloy for micro-EDM process of micro-hole shape workpiece.

Inspection of Heat Exchanger Tubing Defects with Ultrasonic Guided Waves (유도초음파를 이용한 열 교환기 튜브 결함 탐상)

  • Shin, Hyeon-Jae;Rose, Joseph L.;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • This study shows the defect detection and sizing capability of ultrasonic guided waves in the nondestructive inspection of heat exchanger and steam generator tubing. Phase and group velocity dispersion curves for the longitudinal and flexural modes of a sample Inconel tube were presented for the theoretical analysis. EDM(Electric Discharge Machining) wears in tubing under a tube support plate and circumferential laser notches in tubing were detected by an axisymmetric and a non-axisymmetric transducer set up, respectively. EDM wears were detected with L(0, 2), L(0, 3) and L(0, 4) modes and among them L(0, 4) mode was found to be the most sensitive. It was also found that the flexural modes around L(0, 1) mode could be used for the detection and sizing of laser notches in the tubing.

  • PDF

Eddy Current Testing of Weldment by Plus(+) Point Probe (Plus(+) Point Probe를 이용한 용접부 와전류검사)

  • Lee, Hee-Jong;Kim, Yong-Sik;Nam, Mim-Woo;Yoon, Byung-Sik;Kim, Seok-Kon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.6
    • /
    • pp.426-432
    • /
    • 1999
  • A plus-point eddy current test(ECT) probe was developed to examine the defects on the welds of pumps, valves, and pipings which are the major components of the electric power plants, non-destructive evaluation (NDE) techniques for detecting and sizing the flaws were studied adapting this probe. Differential plus-point ECT probe is consists of two "I"-type coils crossed each other and has an advantage having a small influence on the sensitivity by lift-off variation to the conventional types of probe. The specimens with crack-like electro discharge machining(EDM) notches on the weld of type 304 stainless-steel were fabricated in order to evaluate the plus-point ECT probe response to the flaws. NDE techniques to detect and size the flaws and estimate the flaw type were established with this specimens.

  • PDF

Problems and Solutions for Ultra-compact LED Package Development (극소형 LED 패키지 개발의 문제점과 해결 방안)

  • Lee, Jong Chan
    • Journal of Industrial Convergence
    • /
    • v.17 no.4
    • /
    • pp.9-14
    • /
    • 2019
  • This paper presents several problems that can occur in the development of the ultra-compact LED package of less than 1.0mm and introduces the solution to them. In the existing mold structure, since the upper and lower core parts are integrated, various errors have occurred due to the roughness of EDM in the small model, which is a limiting factor in further reducing the mold size. As a countermeasure, the prefabricated model was presented in an earlier study to overcome the obstacles to the development of a ultra-compact LED package. In this paper, several problems have been found during the fabrication of prototypes as a starting work to produce the results for the presented model. The types are suggested and the solutions are discussed. And by changing the existing 2-row structure to 3-row structure in the same size lead frame, the aspect of efficient production is considered. The experimental procedure verifies the proposed solution and conducts a test to produce a prototype to confirm that a good product can be produced.

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

Residual Stress Analysis of New Rails Using Contour Method (굴곡측정법을 이용한 신 레일의 잔류응력 분석)

  • Song, Min Ji;Choi, Wookjin;Lim, Nam-Hyoung;Kim, Dongkyu;Woo, Wanchuck;Lee, Soo Yeol
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.393-399
    • /
    • 2018
  • It is well recognized that residual stresses of the rails, generated from the manufacturing process including roller straightening and heat treatment, play an important role in determining fatigue and fracture properties of the rails. Thus, it has been a challenge to measure the residual stresses accurately. In this work, contour method was employed to evaluate the residual stresses existing in interior of the rails. The cross section perpendicular to the longitudinal direction of the rail was cut at a very slow rate using electric discharge machining (EDM), after which a laser-based flexural measuring instrument enabled us to precisely measure the flection of the cross section. The measured data were converted into the residual stresses using the commercial finite element package, ABAQUS, through a user-defined element (UEL) subroutine, and the residual stresses of the new rails (50N, KR60, UIC60) with three different specifications were compared.

Quantitative EC Signal Analysis on the Axial Notch Cracks of the SG Tubes (SG Tube 축방향 노치 균열의 정량적 EC 신호평가)

  • Min, Kyong-Mahn;Park, Jung-Am;Shin, Ki-Seok;Kim, In-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.374-382
    • /
    • 2009
  • Steam generator(SG) tube, as a barrier isolating primary to the secondary coolant system of nuclear power plants(NPP), must maintain the structural integrity far the public safety and its efficient power generation capacity. And SG tubes bearing defects must be timely detected and taken repair measures if needed. For the accomplishment of these objectives, SG tubes have been periodically examined by eddy current testing(ECT) on the basis of administrative notices and intensified SG management program(SGMP). Stress corrosion cracking(SCC) on the SG tubes is not easily detected and even missed since it has lower signal amplitude and other disturbing factors against its detection. However once SCC is developed, that can cause detrimental affects to the SG tubes due to its rapid propagation rate. Accordingly SCC is categorized as prime damage mechanism challenging the soundness of the SG tubes. In this study, reproduced EDM notch specimens are examined for the detectability and quantitative characterization of the axial ODSCC by +PT MRPC probe, containing pancake, +PT and shielded pancake coils apart in a single plane around the circumference. The results of this study are assumed to be applicable fur providing key information of engineering evaluation of SCC and improvement of confidence level of ECT on SG tubes.