• Title/Summary/Keyword: ECT: Eddy Current Testing

Search Result 82, Processing Time 0.028 seconds

Eddy Current Signal Analysis for Transmit-Receive Pancake Coil on ECT Array Probe

  • Lee, Hyang-Beom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.25-29
    • /
    • 2006
  • In this paper, the eddy current signals come from a pair oi transmit-receive (T/R) pancake coil on ECT array Probe are analyzed with the variations of the lift-of and of the distance between transmit and receive coils. To obtain the electromagnetic characteristics of the probes, the governing equation describing the eddy current problems is derived from Maxwell's equation and is solved using three-dimensional finite element method. Eddy current signals from T/R coils on ECT array probe have quite different characteristics compared with ones from impedance coil on rotating pancake coil probe. The results in this paper ran be helpful when the field eddy current signals from ECT array probe are evaluated.

Numerical Analysis of Eddy Current Testing for Tube with Axi-symmetric Defect using Boundary Element Method (경계요소법을 이용한 축대칭 결함을 갖는 도체관에 대한 와전류탐상 수치해석)

  • Seo, Jang-Won;Lee, Hyang-Beom;Yoon, Man-Sik;Lim, Eui-Soo;Chung, Tae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.748-750
    • /
    • 2001
  • This paper describes numerical analysis of eddy current testing for tube with axi-symmetric defect using boundary element method. In this ECT(Eddy Current Testing) numerical analysis. BEM and FEM are used to compare their characteristics and results of ECT, respectively BEM is easier than FEM to design geometrically complex domain because in case of BEM, domain is divided into segments or elements, but in case of FEM, domain is divided into small finite triangular or quadrilateral elements. For this reason asymmetry defect is used for this BE numerical analysis. As a result, the similar result can be obtained through both numerical analyses, and BEM can be applied to the numerical analysis of ECT.

  • PDF

Development of New Low Frequency ECT Sensor to Detect Inner Defects(I) - Characteristic of Loss of Induced Electromotive Force - (내부결함 검출 가능한 저주파 ECT 센서개발(I) - 전자기 유도기전력 손실량의 특성-)

  • Park, Jeong-Ung;Jang, Mun-Seok;Gim, Guk-Ju;Kim, Beom-Ki
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.57-62
    • /
    • 2015
  • Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing(ECT) is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. The New ECT sensor which can detect inner defects was developed regardless the condition of surface. This sensor is verified to do experiment which measure the loss of induced electromotive force. The loss of induced electromotive force was measured in 5.4% and this low frequency ECT device can detect internal defects at depth 20 mm.

Development of New Low Frequency ECT Sensor to Detect Inner Defects(II) - Application to Welding Specimens Included Defects - (내부결함 검출 가능한 저주파 ECT 센서개발(II) - 결함을 가진 소형 용접시험편에 적용 -)

  • Park, Jeong-Ung;Jang, Mun-Seok;Gim, Guk-Ju;Kim, Beom-Ki
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.63-67
    • /
    • 2015
  • Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing(ECT) is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. The New ECT sensor which can detect inner defects was developed regardless the condition of surface. This sensor is verified to do experiment which measure the loss of induced electromotive force. The loss of induced electromotive force was measured in 5.4% and this low frequency ECT device can detect internal defects at depth 20 mm.

Field Feasibility Study of an Eddy Current Testing System for Steam Generator Tubes of Nuclear Power Plant (원전 증기발생기 와전류검사 시스템 현장적용 연구)

  • Moon, Gyoon-Young;Lee, Tae-Hun;Kim, In-Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2015
  • Steam generator is one of the most important component of nuclear power plant, and it's integrity and reliability are to be assured to high level by pre-service inspection and in-service inspection. To improve the reliability of steam generator heat exchanger tubes and to secure the management of nuclear power plant safely, KHNP CRI recently has developed eddy current testing system for steam generator. KHNP CRI have performed a series of experimental verification and field application to confirm the performance of the developed ECT system in accordance with ASME Code requirements. The ECT system consists of a remote data acquisition unit, an ECT signal acquisition and analysis software, a water chamber robot controller and a probe push-puller. In this paper, we will details of the developed ECT system and the software and their experimental performance. And also we will report the field applying performance and the issues for further steps.

Development of a Multichannel Eddy Current Testing Instrument(II) (다중채널 와전류탐상검사 장치 개발(II))

  • Lee, Hee-Jong;Nam, Min-Woo;Cho, Chan-Hee;Yoo, Hyun-Joo;Kim, In-Chel
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.552-559
    • /
    • 2011
  • Recently, the eddy current testing(ECT), alternating current field testing, magnetic flux leakage testing and remote field testing have been used as a nondestructive evaluation method based on the electromagnetic induction phenomenon. The eddy current testing is now widely accepted as a NDE method for the heat exchanger tube in the electric power industry, chemical, shipbuilding, and military. The ECT system mainly consists of the synthesizer module, analog module, analog-to-digital converter, power supplier, and data acquisition and analysis program. In the previous study, the synthesizer module and the analog module which is essential to the ECT system were primarily developed, and in this study the data acquisition and analysis program were developed. The operation system for this program is based on the Windows 7, and optimized for the Korean users, and the specific feature of this program using setup wizard enables inspector to make a setup easily for acquisition and analysis of ECT data. In this paper, the configuration and functions of eddy current data acquisition and analysis program will be introduced.

A Study on the Design of RFECT System for Ferromagnetic Pipelines (강자성체 배관 탐상용 RFECT System의 설계에 관한 연구)

  • Lee, Yu Ki;Kim, Hui Min;Park, Gwan Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.6
    • /
    • pp.171-178
    • /
    • 2014
  • Remote Field Eddy Current Testing (RFECT), one of the ways which is a nondestructive testing using electromagnetic fields, can make up for Magnetic Flux Leakage (MFL) weaknesses and general Eddy Current Testing (ECT) weaknesses which is an occurrence of a huge friction force or disadvantage of detecting defects on the outer wall. So many of institutes and laboratories have studied on RFECT for the past 50 years. But There is a lack of discussion about a study on eddy current and magnetic field distributions in a pipe wall and designing of RFECT exciter coil. In this paper, eddy current and magnetic field distributions in a pipe wall and influence of altering variables are analyzed. Also, the optimal design algorithm about the RFECT Exciter coil are proposed, and influence on defect signals caused by alteration of its shape is analyzed.

A Study of Frequency Mixing Approaches for Eddy Current Testing of Steam Generator Tubes

  • Jung, Hee-Jun;Song, Sung-Jin;Kim, Chang-Hwan;Kim, Dea-Kwang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.579-585
    • /
    • 2009
  • The multifrequency eddy current testing(ECT) have been proposed various frequency mixing algorithms. In this study, we compare these approaches to frequency mixing of ECT signals from steam generator tubes; time-domain optimization, discrete cosine transform-domain optimization. Specifically, in this study, two different frequency mixing algorithms, a time-domain optimization method and a discrete cosine transform(DCT) optimization method, are investigated using the experimental signals captured from the ASME standard tube. The DCT domain optimization method is computationally fast but produces larger amount of residue.

Characteristic Analysis of Eddy Current Array Probe Signal in Combo Calibration Standard Tube Using Electromagnetic Numerical Analysis (전자기 수치해석을 이용한 표준보정시험편의 배열형 와전류 탐촉자 신호 특성 해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.330-337
    • /
    • 2010
  • In this paper, 3-dimensional electromagnetic numerical analysis is performed about the eddy current(EC) array probe characteristic which is the next generation probe for accurate diagnosis of steam generator(SG) in nuclear power plants(NPPs). ASME(American Society of Mechanical Engineers) Standard and X-probe combo calibration standard tube are selected for acquisition of eddy current testing(ECT) signals and this result of compared with the real test signals for reasonability of result. Based on the analysis result of calibration standard tube, ECT signals that are about the defects of pitting, stress corrosion cracking(SCC), multiple SCC and wear is obtained. Material of specimen was Inconel 600 which is usually used for SG tubes in NPPs. The operation frequency of 300 kHz were used. The signal characteristics could be observed according to the various defects. The results in this paper can be helpful when the ECT signals from EC array probe are evaluated and analyzed.

Parametric Study of Rectangular Coil for Eddy Current Testing of Lamination

  • Wang, Pengfei;Zeng, Zhiwei
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.155-159
    • /
    • 2016
  • Eddy current testing (ECT) is an important nondestructive testing technology for the inspection of flaws in conductive materials. However, this widely used technology is not suitable for inspecting lamination when a conventional pancake coil is used because the eddy current (EC) generated by the pancake coil is parallel to the lamination and will not be perturbed. A new method using a rectangular coil placed vertical to the work piece is proposed for lamination detection. The vertical sections of the rectangular coil induce ECs that are vertical to the lamination and can be perturbed by the lamination. A parametric study of a rectangular coil by finite element analysis was performed in order to examine the capability of generating vertical EC.