• Title/Summary/Keyword: ECG pattern classifier

Search Result 7, Processing Time 0.017 seconds

The Classification of Electrocardiograph Arrhythmia Patterns using Fuzzy Support Vector Machines

  • Lee, Soo-Yong;Ahn, Deok-Yong;Song, Mi-Hae;Lee, Kyoung-Joung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.204-210
    • /
    • 2011
  • This paper proposes a fuzzy support vector machine ($FSVM_n$) pattern classifier to classify the arrhythmia patterns of an electrocardiograph (ECG). The $FSVM_n$ is a pattern classifier which combines n-dimensional fuzzy membership functions with a slack variable of SVM. To evaluate the performance of the proposed classifier, the MIT/BIH ECG database, which is a standard database for evaluating arrhythmia detection, was used. The pattern classification experiment showed that, when classifying ECG into four patterns - NSR, VT, VF, and NSR, VT, and VF classification rate resulted in 99.42%, 99.00%, and 99.79%, respectively. As a result, the $FSVM_n$ shows better pattern classification performance than the existing SVM and FSVM algorithms.

Design of a Pattern Classifier for Pain Awareness using Electrocardiogram (심전도를 이용한 통증자각 패턴분류기 설계)

  • Lim, Hyunjun;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1509-1518
    • /
    • 2017
  • Although several methods have been used to assess the pain levels, few practical methods for classifying presence or absence of the pain using pattern classifiers have been suggested. The aim of this study is to design an pattern classifier that classifies the presence or absence of the pain using electrocardiogram (ECG). We measured the ECG signal from 10 subjects with the painless state and the pain state(Induced by mechanical stimulation). The 10 features of heart rate variability (HRV) were extracted from ECG - MeanRRI, SDNN, rMSSD, NN50, pNN50 in the time domain; VLF, LF, HF, Total Power, LF/HF in the frequency domain; and we used the features as input vector of the pattern classifier's artificial neural network (ANN) / support vector machine (SVM) for classifying the presence or absence of the pain. The study results showed that the classifiers using ANN / SVM could classify the presence or absence of the pain with accuracies of 81.58% / 81.84%. The proposed classifiers can be applied to the objective assessment of pain level.

DIAGNOSING CARDIOVASCULAR DISEASE FROM HRV DATA USING FP-BASED BAYESIAN CLASSIFIER

  • Lee, Heon-Gyu;Lee, Bum-Ju;Noh, Ki-Yong;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.868-871
    • /
    • 2006
  • Mortality of domestic people from cardiovascular disease ranked second, which followed that of from cancer last year. Therefore, it is very important and urgent to enhance the reliability of medical examination and treatment for cardiovascular disease. Heart Rate Variability (HRV) is the most commonly used noninvasive methods to evaluate autonomic regulation of heart rate and conditions of a human heart. In this paper, our aim is to extract a quantitative measure for HRV to enhance the reliability of medical examination for cardiovascular disease, and then develop a prediction method for extracting multi-parametric features by analyzing HRV from ECG. In this study, we propose a hybrid Bayesian classifier called FP-based Bayesian. The proposed classifier use frequent patterns for building Bayesian model. Since the volume of patterns produced can be large, we offer a rule cohesion measure that allows a strong push of pruning patterns in the pattern-generating process. We conduct an experiment for the FP-based Bayesian classifier, which utilizes multiple rules and pruning, and biased confidence (or cohesion measure) and dataset consisting of 670 participants distributed into two groups, namely normal and patients with coronary artery disease.

  • PDF

Design of Hybrid Unsupervised-Supervised Classifier for Automatic Emotion Recognition (자동 감성 인식을 위한 비교사-교사 분류기의 복합 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1294-1299
    • /
    • 2014
  • The emotion is deeply affected by human behavior and cognitive process, so it is important to do research about the emotion. However, the emotion is ambiguous to clarify because of different ways of life pattern depending on each individual characteristics. To solve this problem, we use not only physiological signal for objective analysis but also hybrid unsupervised-supervised learning classifier for automatic emotion detection. The hybrid emotion classifier is composed of K-means, genetic algorithm and support vector machine. We acquire four different kinds of physiological signal including electroencephalography(EEG), electrocardiography(ECG), galvanic skin response(GSR) and skin temperature(SKT) as well as we use 15 features extracted to be used for hybrid emotion classifier. As a result, hybrid emotion classifier(80.6%) shows better performance than SVM(31.3%).

Frequent Pattern Bayesian Classification for ECG Pattern Diagnosis (심전도 패턴 판별을 위한 빈발 패턴 베이지안 분류)

  • Noh, Gi-Yeong;Kim, Wuon-Shik;Lee, Hun-Gyu;Lee, Sang-Tae;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1031-1040
    • /
    • 2004
  • Electrocardiogram being the recording of the heart's electrical activity provides valuable clinical information about heart's status. Many re-searches have been pursued for heart disease diagnosis using ECG so far. However, electrocardio-graph uses foreign diagnosis algorithm due to inaccuracy of diagnosis results for a heart disease. This paper suggests ECG data collection, data preprocessing and heart disease pattern classification using data mining. This classification technique is the FB(Frequent pattern Bayesian) classifier and is a combination of two data mining problems, naive bayesian and frequent pattern mining. FB uses Product Approximation construction that uses the discovered frequent patterns. Therefore, this method overcomes weakness of naive bayesian which makes the assumption of class conditional independence.

Prediction of Transient Ischemia Using ECG Signals (심전도 신호를 이용한 일시적 허혈 예측)

  • Han-Go Choi;Roger G. Mark
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.190-197
    • /
    • 2004
  • This paper presents automated prediction of transient ischemic episodes using neural networks(NN) based pattern matching method. The learning algorithm used to train the multilayer networks is a modified backpropagation algorithm. The algorithm updates parameters of nonlinear function in a neuron as well as connecting weights between neurons to improve learning speed. The performance of the method was evaluated using ECG signals of the MIT/BIH long-term database. Experimental results for 15 records(237 ischemic episodes) show that the average sensitivity and specificity of ischemic episode prediction are 85.71% and 71.11%, respectively. It is also found that the proposed method predicts an average of 45.53[sec] ahead real ischemia. These results indicate that the NN approach as the pattern matching classifier can be a useful tool for the prediction of transient ischemic episodes.

  • PDF

Development of Single Channel ECG Signal Based Biometrics System (단채널 심전도 기반 바이오인식 시스템 개발)

  • Gang, Gyeong-Woo;Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In general, currently developed ECG(electrocardiogram) based biometrics approaches are not suitable for real market applications since they require high cost ECG monitoring device and their measurement methods showed poor usability. In this paper, we developed lead I signal based biometrics system using special purpose ECG measurement hardware. To guarantee signal quality for biometrics from various signal measurement environment in our ordinary life, several filters are applied. In addition, to enhance usability, only two skin on electrodes without reference point are used for measurement. Lead I signals of seventeen candidates are measured from developed hardware and features are extracted. Extracted features are applied to support vector machine (SVM) pattern classifier for biometrics, and the experimental results showed 98.59% of sensitivity (SN) and 97.21% of accuracy (ACC). Compare to conventional ECG biometrics approaches, proposed system showed enhanced usability with low-cost measurement hardware.