• Title/Summary/Keyword: EAF dust recycling

Search Result 34, Processing Time 0.028 seconds

Recycling of Ferrous Scraps (철스크랩의 리사이클링)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.3-16
    • /
    • 2020
  • This work provides an overview of the steel production process, pretreatment and tramp elements of scraps and recycling technology of dust generated from steelmaking process. Steel is the most common metal used by mankind, with the world production of crude steel in 2018 exceeding 1.8 billion tonnes. Recycling of ferrous scraps reduces CO2 emissions by about 42 % and saves about 60 % of energy, compared to production steel from iron ore. Steel scraps are usually recycled to both an electric arc furnace (EAF), scrap-based steelmaking and the basic oxygen furnace (BOF), in ore-based steelmaking. EAF steelmaking, which uses iron scrap as a main raw material, is changing to an energy-saving type with a device for preheating scrap. Dust generated from the steelmaking process is recycled in various ways in the steel mill to recover iron and zinc.

Properties of Zinc and Lead Hydroxyl Chloride in EAF Dust

  • Lee, Sung-Oh;Ko, In-Yong;Shin, Bang-sup;Oh, Jae-Hyun
    • Resources Recycling
    • /
    • v.7 no.1
    • /
    • pp.7-13
    • /
    • 1998
  • The electric arc furnace (EAF) dust used in this experiment showed the formation of an irregular agglomerate of small spherical particles and consisted of 27.5% Fe, 18% Zn, 4.83% Pb and 10.2% CaO, and it also contained 3.26% Cl and 0.15% F. IR spectra peaks of Pb(OH)Cl were observed at 1630 and 1377 ${cm}^{-1}$ regions and the intensity decreased using an acid treatment (1N ${H}_{2}{SO}_{4}$) and thermal treatment at above 600℃, but it was not affected by washing process. Those of ${Zn}_{5}{(OH)}_{8}{Cl}_{2}$ treated by oxidation showed broad absorption peak at 3600∼3200 ${cm}^{-1}$, main peaks at 1136 and 1040 ${cm}^{-1}$ and a splitting peak at 991 and 921 ${cm}^{-1}$ which were believed to be due to ZnO by oxidation at about 700∼. The IR spectra of the dust residues by a washing process show the same peaks at 3449, 1635, 1439, 875, 571 and 455 ${cm}^{-1}$ regions, but the peaks at 2942, 2862, 1136 and 1040 ${cm}^{-1}$ decreased and disappeared using an acid treatment and washing process, which is believed to be due to the dissolution of zinc hydroxyl chloride.

  • PDF

A Study on the Purification of Zn from Pb Splashing Alloy (Pb Splashing 합금으로부터 Zn정련에 관한 연구)

  • 박재욱;김용하;이대열;신형기;김진한;박성수;정원섭
    • Resources Recycling
    • /
    • v.6 no.4
    • /
    • pp.3-10
    • /
    • 1997
  • Electric are furnace dust (EAF dust) generated in steel production based on scrap melting is contained Zn and Fe about 25 and 30 percent by weight, respectively. From a metallurgical point of view, the dust could be regarded as a raw material for Zn and Fe source. To recover the Zn in the metal from EAF dust, many system are proposed such as Arc Plasma Furmace and Pb splasher method. In this study, to recover high purity Zn from Pb splasing alloy, Zn distillation is carried out at the temperature of 1123, 1173, 1223, 1273 K, the gas flow rate of 2.5, 5.0, 8.0 Ni/min and the distilling time of 10, 30, 60, 90 minutes. The main results obtained from this study are as follows:(1) The amount of evaporated Zn and its evaporating rate increased with increasing temperature, but purity of Zn decreased with increasing temperature. Optimum temperature range was found out to be between 1173∼1223K. (2) The amount of evaporated Zn and evaporation rate increased with increasing gas flow rate at a given temperature and distillation time. Gas flow rate has more influence over the amount of evaporated Zn and evaporation rate with increasing temperature.

  • PDF

A Study on the Reduction of Electric Arc Furnace Dust with Carbon (탄소에 의한 전기로 분진의 환원반응에 관한 연구)

  • 진영주;김영진;박병구;이광학;김영홍;이재운
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.27-35
    • /
    • 1998
  • EAF dust generated from electric arc steelmaking process is classified as "hazardous" materials by tbe environmental regulation because of the existence of water leachable heavy metals such as Fe, Zn, Pb, and Cd. However, Fe and Zn among t the elements in the dust can be recovered to high valuable materials by applying a proper process. Therefore, in order to study t the possibility of recovery of iron from EAF dust, the effect oE carbon content and basicity, of synthesized EAF dust on the reduction rate of iron oxide was studied. Experimental results are as follows: TIle softening and melting temperature of the slag w was illcreased with increasing carbon addition amount [or carbon reduction eqUIvalent. At the carbon addition amount of 100% for carbon reduction equivalent and basicity of 1.7, reduction rate of $Fe_2O$ in the slag was the highest. The reaction order fur reduction of $Fe_2O$ by carbon was nearly first order.

  • PDF

EAF Dust Treatment at Miike Smelting CO., LTD.

  • Noda, Shinji;Tatehana, Yoshikazu
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.375-380
    • /
    • 2001
  • MF is a half shaft blast furnace which has been developed at Mitsui Miike Smelter in the 1960’s to treat vertical retort residue. The MF has also been tested for treatment of various recycling materials and wastes. Now various secondaries and wastes (EAF dust, zinc leaching residue, Cu sludge, etc ) are mainly treated. Powder materials are briquetted with reductant before being fed to the furnace. Products are crude zinc oxide, matte, non-hazardous slag and steam. Zinc and lead are recovered in oxide dust, and copper and silver are recovered in matte. The MF can be widely applied to many kinds of materials which contain such non-ferrous metal-valuables. In addition, the improvement in operation and technology has effectively made the unit capacity much larger. The MF now has many advantages for these treatment processes.

  • PDF

Purification on the Leaching Solution of the Crude Zinc Oxide Recovered from the Reduction of EAF Dust (전기로제강분진으로부터 환원휘발된 조산화아연의 침출용액 정액에 관한 연구)

  • Youn Ki-Byoung
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • Purification on the leaching solution of the crude zinc oxide obtained by the reduction of EAF dust has been carried out. Pb and Cd ions in the leaching solution were precipitated and removed from the solution by the addition of zinc metal powder. The purification condition for electrowinning to obtain the high purity zinc metal was investigated by analyzing the effects of Pb and Cd ion concentrations on the contents of impurities in the recovered zinc metal. The 3 N purity zinc metal was obtained at the electrolysis condition of the concentrations of Pb less than 2 ppm and Cd less than 0.1 ppm in the purified solution. For this purification, the amounts of zinc metal powder more than 8.5 g/l should be added in the crude zinc oxide leached solution.

Reduction behavior of Zn, Pb, Cl, Fe, Cu and Cd compounds in EAF dust with carbon (탄소에 의한 전기로 분진 중 Zn, Pb, Cl, Fe, Cu 및 Cd화합물의 환원반응)

  • 이재운;김영진;서성규;이광학;김영홍
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.3-15
    • /
    • 2000
  • Reduction of Electric Arc Furnace dust with carbon (graphite) was studied at the temperature range of $800^{\circ}C$ to $1100^{\circ}C$ in Ar gas atmosphere. The briquetted dust with graphite powder was heated in a vertical tube furnace for given reaction time and Quenched in Ar gas atmosphere. It was found that initially the reduction of Zn was chemically controlled and the activation energy was about 120 KJ/mole. Because the almost all of Pb was removed with Cl in the form of $PbCl_2$, it is considered that Pb is removed by chloride reduction. Cu was vaporized as a chloride up to 30% of its original content, but the remaining of Cu would be accumulated with the reduced iron. and also, Cd was removed completely within 15 min. at $1000^{\circ}C$.

  • PDF

Environmental Leachability of Electric Arc Furnace Dust for Applying as Hazardous Material Treatment (제강분진을 이용한 유해물질 처리기술 적용을 위한 안전성 평가)

  • Lee, Sang-Hoon;Kang, Sung-Ho;Kim, Jee-Hoon;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • Iron manufacturing process involves production of various by-product including slag, sludge, sintering and EAF(Electric Arc furnace dust). Some of the by-products such as EAF and sintering dust are disposed of as waste due to their high heavy metal contents. It has been notice for many years that the EAF dust also contain about 65% of Fe(0) and Fe(II) and then the possible utilization of the iron. One possibility is to apply the EAF as a lining material in conjunction with clay or HDPE liners, in waste landfill. The probable reaction between the leachate containing toxic elements such as TCE, PCE dioxine and $Cr^{6+}$ is reduction of the toxic materials in corresponding to the oxidation of the reduced iron and therefore diminishing the toxicity of the leachate. It is, however, prerequisite to evaluate the leaching characteristics of the EAF dust before application. Amelioration of the leachate would be archived only when the level of toxic elements in the treated leachate is less than that of in the untreated leachate. Several leaching techniques were selected to cover different conditions and variable environments including time, pH and contact method. The testing methods include availability test, pH-stat test and continuous column test. Cr and Zn are potentially leachable elements among the trace metals. The pH of the EAF dust is highly alkaline, recording around 12 and Zn is unlikely to be leached under the condition. On the contrary Cr is more leachable under alkaline environment. However, the released Cr should be reduced to $Cr^{3+}$ and then removed as $Cr(OH)_3$. Removal of the Cr is observed in the column test and further study on the specific reaction of Cr and EAF dust is underway.

전기로 더스트 재활용에 대한 최근의 연구동향

  • 고인용
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2002.05a
    • /
    • pp.27-36
    • /
    • 2002
  • 1995년 이후부터 현재까지 전기로 제강더스트의 재활용 또는 처리에 대하여 국내 및 전 세계의 공개특허 및 연구논문을 분석하여 전기로 더스트의 재활용연구 동향을 파악하고자 하였다. 국내의 경우, 35건의 특허가 공개 또는 등록되었는데, 활용방법에 따라 분류하면 다음과 같다. 고형안정화처리가 6건, 케미칼 제조 7건, 아스콘 채움재가 4건, 토건재료로 활용이 3건, 습식처리 회수가 4건, 용융환원 3건, 폐수처리활용이 2건, 시멘트원료 1건, 건식회수법 5건으로 나눌 수 있다. 또한 년도별로는 95년 2건, 96년 1건, 97년 4건, 98년 4건, 99년 5건, 2000년 18건, 2001년 1건이 출원되었다. 2000년에 전체 출원 건수의 절반이 집중되었다. 미국특허는 이 기간중 39건이 등록된 것으로 검색되었다. 년도별로는 95년 3건, 96년 6건, 97년 5건, 98년 7건, 99년 9건, 00년 2건, 01년 3건, 2002년 4건(2개는 한국출원)이 검색되었다. 처리방법 별로는 마찰재 원료로 활용 3건, 고화처리 3건, 건식장치 1건, 습식처리 13건, 유동환원, 직접환원, 환원배소, 플라즈마환원등의 건식 처리법이 10건, 습식+건식콘크리트 4건, 폐수처리 활용 1건, 건자채 생산 1건등이 등록되었다. 국가전자도서관에서 EAF Dust를 키워드로 1993년 이후의 EAF Dust 관련 연구문헌을 검색한 결과 48건이 검색되었고, 01년에 5건, 00년에 3건, 99년에 4건, 98년 2건, 97년이 가장 활발하여 15건의 보고가 확인되었다. 96년에는 8건, 95년에는 3건의 보고가 검색되었다. 01년의 연구논문들은 direct recycling, reduction kinetics, distillation reduction등에 관심을 보이고 있었다. 가장 활발하게 많은 연구논문이 발표되었던 97년 이후에는 논문 발표수가 현저히 감소되어 97년 이후에 이 분야에 대한 관심이 감소하고 있음을 보여주고 있다.

  • PDF

FASTMET$\circledR$ Process for Steel Mill Waste Recycling

  • Tanaka, Hidetoshi;Harada, Takao;Sugitatsu, Hiroshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.387-392
    • /
    • 2001
  • Kobe Steel, LTD. and Midrex Technologies Inc. jointly developed the FASTMET$\circledR$ process as a steel mill waste recycle technology in which the DRI product meets BF feed material or BOF/EAF feed material requirements. FASTMET(R) process turns value-less wastes into valuable DRI and sellable zinc oxide, and gives the solution for the steel mill wastes recycling from both economical and environmental viewpoints. During the development of the process, Laboratory, Pilot Plant and Demonstration Plant tests were carried out from 1990 to 1998. The first FASTMET(R) commercial plant began operation in April, 2000 and the second commercial plant started in April, 2001 Both commercial plants have proceeded successfully preying that FASTMET$\circledR$ is a suitable process for recycling steel mill waste and for producing DRI as an iron source.

  • PDF