• Title/Summary/Keyword: EADOP

Search Result 2, Processing Time 0.017 seconds

Error Analysis of GNSS Attitude Determination System (GNSS 자세결정시스템의 오차해석)

  • Hwang Dong-Hwan;Lee Sang-Jeong;Park Chan-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.300-306
    • /
    • 2006
  • In this paper an error analysis of 3-dimensional GNSS attitude determination system is given. The attitude error covariance matrix is derived and analyzed. It implies that attitude errors are affected by the baseline length and configuration, the satellites numbers and geometry, receiver measurement noises and the nominal attitude of the vehicle. By defining Euler Angle Dilution Of Precision (EADOP) which is analogous to GDOP, roll, pitch and yaw errors can be efficiently analyzed. However the expression of the attitude error is too complex to get some intuitions. Therefore with a commonly adopted assumption, new expressions for attitude error are derived. The formulas are easy to compute and represent the attitude error as a function of the nominal attitude of a vehicle, the baseline configuration and the receiver noise. Using the formula, the accuracy of the attitude can be analytically predicted without the computer simulations. Applications to some widely used configurations reveal the effectiveness of the proposed method.

Error Analysis of 3-Dimensional GPS Attitude Determination System

  • Park Chan-Sik;Cho Deuk-Jae;Cha Eun-Jong;Hwang Dong-Hwan;Lee Sang-Jeong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.480-485
    • /
    • 2006
  • In this paper, the error investigation of a 3-dimensional GPS attitude determination system using the error covariance analysis is given. New efficient formulas for computing the Euler Angle Dilution of Precision (EADOP) are also derived. The formulas are easy to compute and represent the attitude error as a function of the nominal attitude of a vehicle, the baseline configuration and the receiver noise. Using the formula, the accuracy of the Euler angle can be analytically predicted without the use of computer simulations. Applications to some configurations reveal the effectiveness of the proposed method.