• Title/Summary/Keyword: EABF

Search Result 5, Processing Time 0.025 seconds

Determination of buildup factors for some human tissues using both MCNP5 and Phy-X / PSD

  • Mohammad M. Alda'ajeh;J.M. Sharaf;H.H. Saleh;Mefleh S. Hamideen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4426-4430
    • /
    • 2023
  • In this article, Exposure Buildup Factor(EBF) and the Energy Absorption Buildup Factor(EABF) have been determined for blood, brain, and muscle using the Monte Carlo method which is represented by MCNP5 codes and compared with geometric progression(G-P) fitting method which is represented by Phy-X/PSD online platform. The novelty of the present work is used an energy source of less than 0.1 MeV to determine buildup factors using MCNP5 and using Phy-X/PSD for some human tissues. thus, the energy range used in this case study was 0.06-3 MeV for penetration depths covered 0.5-3 MFP. Results of MCNP5 and Phy-X/PSD are validated against reference values of water that were reported at ANS-6.4.3. present results of EABFs and EBFs for the previously mentioned human tissues appeared good agreement between MCNP5 in comparison with Phy-X/PSD, whereas, the maximum average relative deviation did not exceed 2.37%. results of our article can be used in different medical applications, such as brachytherapy, radiotherapy, and diagnostics.

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong;Suying Zhou ;He Yang ;Xiangxin Xue
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2613-2620
    • /
    • 2023
  • Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

The influence of BaO on the mechanical and gamma / fast neutron shielding properties of lead phosphate glasses

  • Mahmoud, K.A.;El-Agawany, F.I.;Tashlykov, O.L.;Ahmed, Emad M.;Rammah, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3816-3823
    • /
    • 2021
  • The mechanical features evaluated theoretically using Makishima-Mackenzie's model for glasses xBaO-(50-x) PbO-50P2O5 where x = 0, 5, 10, 15, 20, 30, 40, and 50 mol%. Wherefore, the elastic characteristics; Young's, bulk, shear, and longitudinal modulus calculated. The obtained result showed an increase in the calculated values of elastic moduli with the replacement of the PbO by BaO contents. Moreover, the Poisson ratio, micro-hardness, and the softening temperature calculated for the investigated glasses. Besides, gamma and neutron shielding ability evaluated for the barium doped lead phosphate glasses. Monte Caro code (MCNP-5) and the Phy-X/PSD program applied to estimate the mass attenuation coefficient of the studied glasses. The decrease in the PbO ratio has a negative effect on the MAC. The highest MAC decreased from 65.896 cm2/g to 32.711 cm2/g at 0.015 MeV for BPP0 and BPP7, respectively. The calculated values of EBF and EABF showed that replacement of PbO with BaO contents in the studied BPP glasses helps to reduce the number of photons accumulated inside the studied BPP glasses.

Evaluation of photon radiation attenuation and buildup factors for energy absorption and exposure in some soils using EPICS2017 library

  • Hila, F.C.;Javier-Hila, A.M.V.;Sayyed, M.I.;Asuncion-Astronomo, A.;Dicen, G.P.;Jecong, J.F.M.;Guillermo, N.R.D.;Amorsolo, A.V. Jr.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3808-3815
    • /
    • 2021
  • In this paper, the EPICS2017 photoatomic database was used to evaluate the photon mass attenuation coefficients and buildup factors of soils collected at different depths in the Philippine islands. The extraction and interpolation of the library was accomplished at the recommended linear-linear scales to obtain the incoherent and total cross section and mass attenuation coefficient. The buildup factors were evaluated using the G-P fitting method in ANSI/ANS-6.4.3. An agreement was achieved between XCOM, MCNP5, and EPICS2017 for the calculated mass attenuation coefficient values. The buildup factors were reported at several penetration depths within the standard energy grid. The highest values of both buildup factor classifications were found in the energy range between 100 and 400 keV where incoherent scattering interaction probabilities are predominant, and least at the region of predominant photoionization events. The buildup factors were examined as a function of different soil silica contents. The soil samples with larger silica concentrations were found to have higher buildup factor values and hence lower shielding characteristics, while conversely, those with the least silica contents have increased shielding characteristics brought by the increased proportions of the abundant heavier oxides.

The influence of MgO on the radiation protection and mechanical properties of tellurite glasses

  • Hanfi, M.Y.;Sayyed, M.I.;Lacomme, E.;Akkurt, I.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2000-2010
    • /
    • 2021
  • Mechanical moduli, such as Young's modulus (E), Bulks modulus (B), Shear modulus (S), longitudinal modulus (L), Poisson's ratio (σ) and micro Hardness (H) were theoretically calculated for (100-x)TeO2+x MgO glasses, where x = 10, 20, 30, 40 and 45 mol%, based on the Makishima-Mackenzie model. The estimated results showed that the mechanical moduli and the microhardness of the glasses were improved with the increase of the MgO contents in the TM glasses, while Poisson's ratio decreased with the increase in MgO content. Moreover, the radiation shielding capacity was evaluated for the studied TM glasses. Thus, the linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), transmission factor (TF) and half-value thickness (𝚫0.5) were simulated for gamma photon energies between 0.344 and 1.406 MeV. The simulated results showed that glass TM10 with 10 mol % MgO possess the highest LAC and varied in the range between 0.259 and 0.711 cm-1, while TM45 glass with 45 mol % MgO possess the lowest LAC and vary in the range between 0.223 and 0.587 cm-1 at gamma photon energies between 0.344 and 1.406 MeV. Furthermore, the BXCOM program was applied to calculate the effective atomic number (Zeff), equivalent atomic number (Zeq) and buildup factors (EBF and EABF) of the glasses. The effective removal cross-section for the fast neutrons (ERCSFN, ∑R) was also calculated theoretically. The received data depicts that the lowest ∑R was achieved for TM10 glasses, where ∑R = 0.0193 cm2 g-1, while TM45 possesses the highest ERCSFN where ∑R = 0.0215 cm2 g-1.