• 제목/요약/키워드: EA.hy926 cell

검색결과 4건 처리시간 0.081초

Gene Expression Profile of Zinc-Deficient, Homocysteine-Treated Endothelial Cells

  • Kwun, In-Sook;Beattie, John H.
    • Preventive Nutrition and Food Science
    • /
    • 제8권4호
    • /
    • pp.390-394
    • /
    • 2003
  • In the post-genome period, the technique for identifying gene expression has been progressed to high throughput screening. In the field of molecular nutrition, the use of screening techniques to clarify molecular function of specific nutrients would be very advantageous. In this study, we have evaluated Zn-regulated gene expression in Zn-deficient, homocystein-treated EA.hy926 cells, using cDNA microarray, which can be used to screen the expression of many genes simultaneously. The information obtained can be used for preliminary assessment of molecular and signaling events modulated by Zn under pro-atherogenic conditions. EA.hy926 cells derived from human umbilical vein endothelial cells were cultured in Zn-adequate (control, 15 $\mu$M Zn) or Zn-deficient (experimental, 0 $\mu$M Zn) Dulbecco's MEM media under high homocysteine level (100 $\mu$M) for 3 days of post-confluency. Cells were harvested and RNA was extracted. Total RNA was reverse-transcribed and the synthesized cDNA was labeled with Cy3 or Cy5. Fluorescent labeled cDNA probe was applied to microarray slides for hybridization, and the slide was then scanned using a fluorescence scanner. The expression of seven genes was found to be significantly decreased, and one significantly increased, in response to treatment of EA.hy926 cells with Zn-deficient medium, compared with Zn-supplemented medium. The upregulated genes were oncogenes and tumor suppressor genes, cell cycle-related genes and transporter genes. The down-regulated gene was RelB, a component of the NF-kappaB complex of transcription factors. The results of this study imply the effectiveness of cDNA microarray for expression profiling of a singly nutrient deficiency, namely Zn. Furthur study, using tailored-cDNA array and vascular endothelial cell lines, would be beneficial to clarify the molecular function of Zn in atherosclerosis, more in detail.

Zinc deficiency decreased cell viability both in endothelial EA.hy926 cells and mouse aortic culture ex vivo and its implication for anti-atherosclerosis

  • Cho, Young-Eun;Choi, Jee-Eun;Alam, Md. Jahangir;Lee, Man-Hyo;Sohn, Ho-Yong;Beattie, John H.;Kwun, In-Sook
    • Nutrition Research and Practice
    • /
    • 제2권2호
    • /
    • pp.74-79
    • /
    • 2008
  • Zinc plays a protective role in anti-atherosclerosis but the clear mechanism has not been proposed yet. In the present study, we evaluated whether zinc modulates atherosclerotic markers, VACM-1 and ICAM-1 and cell viability both in endothelial cells in vitro and mouse aortic cell viability ex vivo. In study 1, as in vitro model, endothelial EA.hy926 cells were treated with $TNF{\alpha}$ for 5 hours for inducing oxidative stress, and then treated with Zn-adequacy ($15\;{\mu}M$ Zn) or Zn-deficiency ($0\;{\mu}M$ Zn) for 6 hours. Pro-atherosclerosis factors, VCAM-1 and ICAM-1 mRNA expression and cell viability was measured. In study 2, as ex vivo model, mouse aorta ring was used. Mourse aorta was removed and cut in ring then, cultured in a 96-well plate. Aortic ring was treated with various $TNF{\alpha}$ (0-30 mg/ml) and intracellular zinc chelator, N, N, N', N', -tetrakis (2-pyridylmethyl) ethylenediamine (TPEN, $0-30\;{\mu}M$) for cellular zinc depletion for 2 days and then cell viability was measured. The results showed that in in vitro study, Zn-adequate group induced more VCAM-1 & ICAM-1 mRNA expression than Zn-deficient group during 6-hour zinc treatment post-5 hour TNF-$\alpha$ treatment, unexpectedly. These results might be cautiously interpreted that zinc would biologically induce the early expression of anti-oxidative stress through the increased adhesion molecule expression for reducing atherosclerotic action, particularly under the present 6-hour zinc treatment. In ex vivo, mouse aortic ring cell viability was decreased as TNF-$\alpha$ and TPEN levels increased, which suggests that mouse aortic blood vessel cell viability was decreased, when oxidative stress increases and cellular zinc level decreases. Taken together, it can be suggested that zinc may have a protective role in anti-atherosclerosis by cell viability in endothelial cells and aorta tissue. Further study is needed to clarify how pro-atherosclerosis molecule expression is modulated by zinc.

ginsenoside Rg3에 의한 B16F10 흑색종 세포의 세포사멸 유도 (Ginsenoside Rg3 Induces Apoptosis in B16F10 Melanoma Cells)

  • 이슬기;김병수;남주옥
    • 생명과학회지
    • /
    • 제24권9호
    • /
    • pp.1001-1005
    • /
    • 2014
  • Ginsenoside Rg3는 홍삼으로부터 추출한 활성 성분들 중 하나로 한방 의학에선 원기를 회복시키는 약제로 잘 알려져 있는 인체에 유효한 화학 성분이다. Rg3는 지금까지 많은 연구들에 의하여 다양한 암세포로부터 강력한 항암효과를 가진다고 알려져 있다. 그러나 Rg3가 악성 흑색종 세포에서 어떻게 세포사멸을 유도하는지에 대한 작용 기작은 명백하게 밝혀지지 않았다. 따라서, 본 연구에서는 ginsenoside Rg3가 B16F10 흑색종 세포에서 세포 사멸 유도 활성 및 기전에 관한 영향을 조사하였다. 세포 생존력을 MTT assay 법으로 수행한 결과, B16F10 세포에선 농도 의존적으로 세포증식 저해 효과가 나타났고 정상세포인 EA.hy.926 과 NIH3T3 에서는 나타나지 않았다. B1610 세포에 Rg3를 농도 별로 처리 후, TUNEL 염색을 한 결과 세포사멸이 농도 의존적으로 증가 하는 것을 확인 할 수 있었다. Western blot 분석을 실시한 결과, Rg3를 처리한 B16F10 세포에서 p-FAK, Bcl-2, pro-caspase3 단백질들의 발현이 감소 되었고 이와 반대로 Bax, p-p38의 발현은 증가되었다. 따라서, 본 연구에서는 Rg3가 B16F10 흑색종 세포에서 항암제의 agent로써 사용 될 수 있다는 것을 입증하였다.