• Title/Summary/Keyword: EA Performance

Search Result 132, Processing Time 0.033 seconds

Dependence of Extinction Ratio on the Carrier Transport in $1.55{\mu}m$ InGaAsP/InGaAsP Multiple-Quantum-Well Electroabsorption Modulators ($1.55{\mu}m$ InGaAsP/InGaAsP 다중양자우물구조 전계흡수형 광변조기에서 캐리어 수송현상이 소광특성에 미치는 영향)

  • Shim, Jong-In;Eo, Yung-Seon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.9
    • /
    • pp.15-22
    • /
    • 2000
  • The effects of carrier transport and input power on the extinction ratio was theoretically analyzed in a 1.55${\mu}m$ InGaAsP/InGaAsP multiple-quantum-well(MQW) electroabsorption(EA) modulator. Poisson's equation, current continuity equations for electrons and holes, and optical field distribution were self-consistently solved by considering electric field dependent absorption coefficients. The field screening effect due to the carrier accumulation in heterointerface and the space-charge region occurred more seriously at the input side of modulator as input optical intensity increased. It was revealed that extinction ratio could be steeply degraded for modulator with the length of 200${\mu}m$ when an input power exceeds 10mW. A degradation of extinction ratio due to the field screening effect would be more significantly at high-performance devices such as a 1.55${\mu}m$DFB-LD/EA-modulator integrated source where optical coupling efficiency is almost complete or a very high-speed modulator with its length as short as a few tens ${\mu}m$.

  • PDF

A numerical study on the performance of the smoke exhaust system according to the smoke exhaust method in emergency station for railway tunnel (철도터널 구난역의 제연방식에 따른 제연성능에 관한 수치 해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Seo, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.845-856
    • /
    • 2017
  • In the long railway tunnel, in order to secure safety in case of fire, it is required a emergency station. However, there is no standard or research results on smoke exhaust method and exhaust flow rate in emergency station, so it is necessary to study the smoke exhaust system for emergency station. In this study, we are created a numerical analysis model for emergency station where the evacuation cross passage connected to the service tunnel or the relative tunnel was installed at regular intervals (40 m intervals). And the fire analysis are carried out by varying the fire intensity (15, 30MW), the smoke exhaust method (only air supply, forced air supply and exhaust, forced air exhaust only), and the air flow rate (7, 14, $40m^3/s$). From the results of fire analysis, temperature and CO concentration are analyzed and ASET based on the limit temperature are compared at various condition. As a result, in the case with fire intensity of 15 MW, it is shown that a sufficiently safe evacuation environment can be ensured by applying forced air supply and exhaust method or forced air exhaust only method when the air flow rate is $7m^3/s$ above. In case of fire intensity of 30 MW, it is impossible to maintain the safety evacuation environment for more than 900 seconds when the exhaust air volume is below $14m^3/s$. And when the air flow rate is $40m^3/s$, the exhaust port is disposed at the side portion of the upper duct, which is most advantageous for securing the temperature-based safety.

Analyses of Larg Cell Area MCFC System Dynamics (대면적 용융탄산염 연료전지 시스템 동특성 분석)

  • 강병삼;고준호;이충곤;임희천
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.592-604
    • /
    • 1999
  • The steady state and dynamic characteristics of large cell area MCFC stacks were analyzed to solve the problems such as temperature difference generated in stacks and pressure difference between anode and cathode. Manipulated variables (current density, duel utilization rate, oxidant utilization rate) and controlled variables (temperature difference, anode and cathode pressure difference) which had an important effect on the MCFC stack performance were determined using operation results of two types of MCFC stacks (5kW (3,000 $\textrm{cm}^2$, 20 ea). 3kW (6,000 $\textrm{cm}^2$, 5ea)). The stability and transfer function representing system dynamics were obtained by steady state gain rate which showed the relative change between MVs and CVs. The transfer function was a 3$\times$3 matrix and a typical first order system without time delay. The optimal operating condition of large cell area MCFC stacks could be determined by analyzing dynamic characteristics. In case of a 5 kW MCFC stack, pressurized operation with recycle flow should be used to control the outlet temperature less than 68$0^{\circ}C$ and to control the MCFC system effectively. MIMO control or decoupler should be used to remove the interaction between MVs and CVs. This result will be used as important data in determining the control structure design and operation mode of large cell area MCFC systems in the future.

  • PDF

The Development of Protocol for Construction of Smart Factory (스마트 팩토리 구축을 위한 프로토콜 개발)

  • Lee, Yong-Min;Lee, Won-Bog;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1096-1099
    • /
    • 2019
  • In this paper, we propose the protocol for construction of smart factory. The proposed protocol for construction of smart factory consists of an OPC UA Server/Client, a technology of TSN realtime communication, a NTP & PTP time synchronization protocol, a FieldBus protocol and conversion module, a technology of saving data for data transmit latency and synchronization protocol. OPC UA server/client is a system integration protocol which makes interface industrial hardware device and supports standardization which allows in all around area and also in not independent from any platform. A technology of TSN realtime communication provides an high sensitive time management and control technology in a way of sharing specific time between devices in the field of high speed network. NTP & PTP time synchronization protocol supports IEEE1588 standardization. A fieldbus protocol and conversion module provide an extendable connectivity by converting industrial protocol to OPC. A technology of saving data for data transmit latency and synchronization protocol provide a resolution function for a loss and latency of data. Results from testing agencies to assess the performance of proposed protocol for construction of smart factory, response time was 0.1367ms, synchronization time was 0.404ms, quantity of concurrent access was 100ea, quantity of interacting protocol was 5ea, data saving and synchronization was 1,000 nodes. It produced the same result as the world's highest level.

Optimal Design of Impeller according to Blade Shape Variation Using CFD Simulation (CFD를 이용한 블레이드 형상 변화에 따른 블로워 임펠러 최적설계)

  • Yu, Da-Mi;Kim, Semo;Jang, Hye-Lim;Han, Dae-Hyun;Kang, Lae-Hyong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.29-37
    • /
    • 2019
  • The objective of this study was to investigate the influence of the blade shape on the impeller performance, for design optimizing of the high airflow impeller. First, the quantity, angle, and length of blades, which are considered to have a large influence on the impeller performance, were selected as design variables. Then, 27 cases of impeller shapes were selected according to the design of experiment (DOE). To predict the conduct of the blower based on the selected impeller shape, flow analysis was performed using the immersed solid method of ANSYS CFX. In the CFD results, the highest airflow was expected in the impeller having a combination of 50 EA, $6^{\circ}$ and 5 mm. Finally, a blower with the original impeller shape and the optimized impeller shape was fabricated using a 3D printer, and the analysis tendency and experimental tendency were verified through experiments.

Predictability of Northern Hemisphere Teleconnection Patterns in GloSea5 Hindcast Experiments up to 6 Weeks (GloSea5 북반구 대기 원격상관패턴의 1~6주 주별 예측성능 검증)

  • Kim, Do-Kyoung;Kim, Young-Ha;Yoo, Changhyun
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.295-309
    • /
    • 2019
  • Due to frequent occurrence of abnormal weather, the need to improve the accuracy of subseasonal prediction has increased. Here we analyze the performance of weekly predictions out to 6 weeks by GloSea5 climate model. The performance in circulation field from January 1991 to December 2010 is first analyzed at each grid point using the 500-hPa geopotential height. The anomaly correlation coefficient and mean-square skill score, calculated each week against the ECWMF ERA-Interim reanalysis data, illustrate better prediction skills regionally in the tropics and over the ocean and seasonally during winter. Secondly, we evaluate the predictability of 7 major teleconnection patterns in the Northern Hemisphere: North Atlantic Oscillation (NAO), East Atlantic (EA), East Atlantic/Western Russia (EAWR), Scandinavia (SCAND), Polar/Eurasia (PE), West Pacific (WP), Pacific-North American (PNA). Skillful predictability of the patterns turns out to be approximately 1~2 weeks. During summer, the EAWR and SCAND, which exhibit a wave pattern propagating over Eurasia, show a considerably lower skill than the other 5 patterns, while in winter, the WP and PNA, occurring in the Pacific region, maintain the skill up to 2 weeks. To account for the model's bias in reproducing the teleconnection patterns, we measure the similarity between the teleconnection patterns obtained in each lead time. In January, the model's teleconnection pattern remains similar until lead time 3, while a sharp decrease of similarity can be seen from lead time 2 in July.

A study on the Effect of consultants' competency on Organizational performance through service quality: focusing on organizational creativity and innovation (컨설턴트의 역량이 서비스 품질을 통해 조직성과에 미치는 영향에 관한 연구: 조직 창의성과 혁신성 중심으로)

  • Lee, Jung Ea;Seo, Young Wook;Lee, Jeong Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.577-584
    • /
    • 2020
  • This study examined the effects of management consultant competency (ability, professionalism) and consulting service quality (reliability, assurance) on organizational creativity and innovation. The research target was companies with experience in consulting, and sample data from 62 surveyed companies (80 persons) were analyzed using SPSS 25.0 and Smart PLS 2.0 based on statistics to perform frequency analysis, reliability, and feasibility analysis. The summary of the research results is as follows. First, it has been verified that consultant competency (ability, professionalism) and consulting service quality (reliability, assurance) had positive impacts. Second, service reliability and assurance, which are components of consulting service quality, significantly affected consulting performance (organizational creativity, innovation). Taken together, management consulting has a positive effect on creativity and innovation in an organization and ultimately contributes to improvement of the business performance of the company, depending on the competency of the consultant and quality of the services provided. Based on the results of this study, we intend to improve the quality of SME consulting by providing theoretical and practical implications as well as contribute to the growth of SMEs requiring innovation in the era of the 4th Industrial Revolution.

Compact Anode Design with the Heat Capacity Performance in Rotating Anode X-ray Tube for Digital Radiography

  • Lee, Seok Moon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.136-141
    • /
    • 2015
  • We studied the compact anode design to develop 100 kW rotating anode X-ray tube with large focal spot 1.2 mm, small focal spot 0.6 mm and tube voltage 150 kV for large hospital digital radiography using computer thermal simulation. The larger thermal radiation effect in a high vacuum can reduce the temperature of anode so the method to increase the surface area of anode is investigated. The anode has the multi-tier shape at the back side of TZM body of anode and also bigger diameter of anode. The number of multi-tiers was varied from 6 to 15 and the diameter of anode was also varied from ${\Phi}74$ to ${\Phi}82$. From ANSYS transient thermal simulation result, we could obtain $1056.4^{\circ}C$ anode maximum temperature when applying 100 kW input power at 0.1 second on target focal track which is less than $1091^{\circ}C$ of the conventional 75 kW X-ray tube with reduced anode weight by 15.5% than the conventional anode. The compact anode of reduced anode weight is able to improve the unwanted noise when the rotor is rotating at high-speed and also reduce the rotational torque which the cost effective stator-coil is possible. It is believed that the anode with 15 ea multi-tiers using ${\Phi}82$ can satisfy with the specification of the anode heat capacity. From the results of this paper, it has been confirmed that the proposed compact anode can be used as the anode of 100 kW rotating anode X-ray tube for digital radiography.

Performance Evaluation of Closed Co-axial Ground Heat Exchanger in the case of 2000m-Depth Single Well (2000m 단일 시추공에서 밀폐 동축 방식 지중 열교환기의 취득온도 성능평가)

  • Ryoo, Yeon-Su;Kim, Jae-Hyeok;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.83-92
    • /
    • 2016
  • The Korean government has been making efforts to use renewable energy to reduce the consumption of fossil fuels for the heating system in greenhouses. The number of greenhouses that installed a geothermal heat pump system is 201 EA with the volume of 132.8 ha and 108,467kW from 2010-2014. The geothermal system, called a shallow geothermal system, with the temperature of $10-20^{\circ}C$ has accessories composed of a BHE and heat pump. Moreover, it is necessary to have a wide area to install the BHE and to drill to the depth of 200 m. On the other hand, even though the deep geothermal system needs a high drilling cost to obtain the temperature of $40-150^{\circ}C$, the system has the advantages of the small area required for the BHE and operation without a heat pump. In this study, the temperature of the return water and heat capacity were measured to obtain the geothermal energy efficiently on the condition of the water flow being changed in the BHE. The temperature according to the return water changes through the heat conduction based on the increase of ground temperature up to the underground depth has been calculated to conduct a simulation and is compared with the field experiment test results.

A Design and Implementation Red Tide Prediction Monitoring System using Case Based Reasoning (사례 기반 추론을 이용한 적조 예측 모니터링 시스템 구현 및 설계)

  • Song, Byoung-Ho;Jung, Min-A;Lee, Sung-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1219-1226
    • /
    • 2010
  • It is necessary to implementation of system contain intelligent decision making algorithm because discriminant and prediction system for Red Tide is insufficient development and the study of red tide are focused for the investigation of chemical and biological causing. In this paper, we designed inference system using case based reasoning method and implemented knowledge base that case for Red Tide. We used K-Nearest Neighbor algorithm for recommend best similar case and input 375 EA by case for Red Tide case base. As a result, conducted 10-fold cross verification for minimal impact from learning data and acquired confidence, we obtained about 84.2% average accuracy for Red Tide case and the best performance results in case by number of similarity classification k is 5. And, we implemented Red Tide monitoring system using inference result.