• Title/Summary/Keyword: E3 Dynamics

Search Result 354, Processing Time 0.032 seconds

Differences in Population Density of 3 Rodent Species Between Natural Restored and Red Pine Silvicultured Forests after Forest fire (산불피해 후 자연복원과 소나무 조림을 실시한 지역에서 설치류 3종의 개체군 밀도 차이)

  • Lee, Eun-Jae;Son, Seung-Hun;Lee, Woo-Shin;Eo, Soo-Hyung;Rhim, Shin-Jae
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.553-558
    • /
    • 2010
  • This study was conducted to clarify the differences in rodents population densities between natural restored and red pine silvicultured forests after forest fire in Samcheok, Gangwon Province, Korea from March to December 2008. One ha size of 3 study plots were set up in each natural restored and silvicultured stand. We trapped the small rodents during 4 consecutive nights every 2 months in each stand. Understory coverage and number of shrub stems were higher in silvicultured stand than in natural restored stand. Coverage of overstory, suboverstory and midstory, number of tree stem, woody seedling stems and dead wood, and amount of coarse woody debris were higher in natural restored stand than in silvicultured stand. Six hundred eighty eight individuals of four species, such as Apodemus agrarius, A. peninsulae, Eothenomys regulus and Tamias sibiricus were captured in our study. Number of captured small rodents were higher in natural restored stand than in silvicultured stand. Also, species compositions were differed in both stands. The captured number of A. agrarius and A. peninsulae were most highest in April and December. E. regulus were shown higher number of captured in April and June, and T. sibiricus were in June and October. Removal of coarse woody debris and silvicultural practice would not be good for the inhabitation of small rodents. For the conservation of small rodents diversity, management of understory and canopy would be needed in forest fired area.

Long-term Studies on Zooplankton Community in the Hwang River Ecosystem (황강생태계 동물플랑크톤 군집의 장기변화)

  • Eui-Jeong Ko;Yu-Ji Heo;Gea-Jae Joo;Hyun-Woo Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.398-405
    • /
    • 2022
  • The research was based on long-term studies on the major physico-chemical and hydrological factors and zooplankton community dynamics in the Hwang River. We had 341 times survey and collected zooplankton samples in the Hwang River of mid-Nakdong River from 1995 to 2013. We identified 97 zooplankton species, including 77 rotifers, 16 cladocerans, and 4 copepods. The total zooplankton abundance and species diversity were shown distinctive temporal variation (ANOVA, p<0.001). Annual average of zooplankton population density was 58.4±3.2 ind L-1 (n=341) and the lowest was 17.0±3.8 ind L-1 (1996, n=20), while the highest was 151.5±32.3 ind L-1 (2010, n=22). For zooplankton, small rotifer groups(e.g., Keratella sp., Brachionus sp., Trichotria sp.) dominated the study site for 19 years survey. Statistical analysis revealed that there were positive relationships with SiO2 (p=0.002) and water level (p<0.001) for the high abundance of rotifer community. There were considerable variations both the total cladocerans population and the number of cladocerans' species concerning annual precipitation. Despite the appearance of various zooplankton in the Hwang River, the mean population density remained low. Due to the lateral structures in the Nakdong River, the downstream basin of the Hwang River is inevitably affected. The zooplankton community in our study site is considered to be mainly influenced by external factors that can stably increase and maintain the volume of the water body and internal factors that induce an increase in food sources through the inflow of nutrients into the water body.

Effects of Temperature on the Development and Reproduction of Matsumuraeses phaseoli (Lepidoptera: Tortricidae) (팥나방(Matsumuraeses phaseoli)의 발육과 생식에 미치는 온도의 영향)

  • Jeong Joon, Ahn;Eun Young, Kim;Bo Yoon, Seo;Jin Kyo, Jung
    • Korean journal of applied entomology
    • /
    • v.61 no.3
    • /
    • pp.461-473
    • /
    • 2022
  • Matsumuraeses phaseoli is one of important pests in soybean crops, especially adzuki beans. We investigated the effects of temperature on development of each life stage, adult longevity and fecundity of M. phaseoli for understanding the biological characteristics of M. phaseoli at ten constant temperatures of 7, 10, 13, 16, 19, 22, 25, 28, 31, and 34℃. Eggs hatched successfully at all temperature subjected except 7℃ and 34℃. The developmental period of each life stage and adult longevity of M. phaseoli decreased as temperature increased. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of M. phaseoli were estimated by linear regression as 9.04℃ and 422.97DD, respectively. TL and TH from egg hatching to adult emergence using SSI model were 20.0℃ and 32.3℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of M. phaseoli was 12.3℃. We constructed the adult oviposition model of M. phaseoli using adult survivorship and fecundity. Temperature-dependent development models and adult oviposition models will be helpful to understand the population dynamics of M. falcana and to establish the strategy of integrated pest management in soybean fields.

A Study for Strategy of On-line Shopping Mall: Based on Customer Purchasing and Re-purchasing Pattern (시스템 다이내믹스 기법을 활용한 온라인 쇼핑몰의 전략에 관한 연구 : 소비자의 구매 및 재구매 행동을 중심으로)

  • Lee, Sang-Gun;Min, Suk-Ki;Kang, Min-Cheol
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.91-121
    • /
    • 2008
  • Electronic commerce, commonly known as e-commerce or eCommerce, has become a major business trend in these days. The amount of trade conducted electronically has grown extraordinarily by developing the Internet technology. Most electronic commerce has being conducted between businesses to customers; therefore, the researches with respect to e-commerce are to find customer's needs, behaviors through statistical methods. However, the statistical researches, mostly based on a questionnaire, are the static researches, They can tell us the dynamic relationships between initial purchasing and repurchasing. Therefore, this study proposes dynamic research model for analyzing the cause of initial purchasing and repurchasing. This paper is based on the System-Dynamic theory, using the powerful simulation model with some restriction, The restrictions are based on the theory TAM(Technology Acceptance Model), PAM, and TPB(Theory of Planned Behavior). This article investigates not only the customer's purchasing and repurchasing behavior by passing of time but also the interactive effects to one another. This research model has six scenarios and three steps for analyzing customer behaviors. The first step is the research of purchasing situations. The second step is the research of repurchasing situations. Finally, the third step is to study the relationship between initial purchasing and repurchasing. The purpose of six scenarios is to find the customer's purchasing patterns according to the environmental changes. We set six variables in these scenarios by (1) changing the number of products; (2) changing the number of contents in on-line shopping malls; (3) having multimedia files or not in the shopping mall web sites; (4) grading on-line communities; (5) changing the qualities of products; (6) changing the customer's degree of confidence on products. First three variables are applied to study customer's purchasing behavior, and the other variables are applied to repurchasing behavior study. Through the simulation study, this paper presents some inter-relational result about customer purchasing behaviors, For example, Active community actions are not the increasing factor of purchasing but the increasing factor of word of mouth effect, Additionally. The higher products' quality, the more word of mouth effects increase. The number of products and contents on the web sites have same influence on people's buying behaviors. All simulation methods in this paper is not only display the result of each scenario but also find how to affect each other. Hence, electronic commerce firm can make more realistic marketing strategy about consumer behavior through this dynamic simulation research. Moreover, dynamic analysis method can predict the results which help the decision of marketing strategy by using the time-line graph. Consequently, this dynamic simulation analysis could be a useful research model to make firm's competitive advantage. However, this simulation model needs more further study. With respect to reality, this simulation model has some limitations. There are some missing factors which affect customer's buying behaviors in this model. The first missing factor is the customer's degree of recognition of brands. The second factor is the degree of customer satisfaction. The third factor is the power of word of mouth in the specific region. Generally, word of mouth affects significantly on a region's culture, even people's buying behaviors. The last missing factor is the user interface environment in the internet or other on-line shopping tools. In order to get more realistic result, these factors might be essential matters to make better research in the future studies.

A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations (현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석)

  • Hyunjeong Jeon;Hyung Chul Shin;Tae Kwon Yun;Weon Shik Han;Jaehoon Jeong;Jaehwii Gwag
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.311-330
    • /
    • 2023
  • Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.

Development and its Application for Energy Efficiency Operation Indicator and Energy Efficiency Design Index Monitoring System on the Ship (선박의 에너지효율운전지표와 에너지효율설계지수의 모니터링 시스템 개발과 그 응용)

  • Lee, Don-Chool;Kim, Eoue-Sek;Joo, Ki-Se;Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.500-507
    • /
    • 2010
  • Regard to the global warming, the shipping industries are progressed the dedicated endeavor to reduce greenhouse gas. As the study results of 2009 GHG study team, the $CO_2$ emission of shipping industries exceeded slightly 1.0 billion ton during one year(2007) and it is 3.3% of total $CO_2$ amount exhausted from all industries. This paper are introduced the energy efficiency design index / operation indicator monitoring system(EDiMS) which matched with EVAMOS software released by the dynamics laboratory of Mokpo maritime university. EDiMS can continuously be monitored amounts of $CO_2$, NOx, SOx, and PM emitted from ship and it can be applied as the useful tool of the inventory work of air pollution and the ship energy management plan for the mitigation or reduction of ship emission.

Oxygen Sites in Quaternary Ca-Na Aluminosilicate Classes : O-17 Solid-State NMR Study (사성분계 비정질 Ca-Na 알루미노규산염의 산소주변의 원자구조 : O-17 고상핵자기 공명분광학분석)

  • Sung, So-Young;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.347-353
    • /
    • 2006
  • The atomic-nano scale structures of multi-component aluminosilicate glasses have not been well understood in spite of its implications fur dynamics and generation of magma in the natural system due to lack of suitable spectroscopic and scattering experiments. Here, we report O-17 MAS and isotropic projection of 3QMAS NMR spectra for quaternary Na-Ca silicate glasses $[(CaO)_x(Na_2O)_{1-x}]\;(A1_2O_3)_{0.5}(SiO_2)_6,\;CNAS)$ at 14.1 Tesla where atomic configurations around bridging oxygen (Si-O-Si, Si-O-Al) and non bridging oxygen (Na-O-Si, Ca-O-Si, (Na, Ca)-O-Si) are partially resolved. With increasing Na content, the fraction of Na-O-Si increases while those for bridging oxygens remain constant. The Na/Ca ratio apparently affects the peak widths of bridging oxygen peaks (e.g., Si-O-Si)) and thus the topological entropy as well as chemical shifts of the bridging oxygen peaks, implying that both BOs and NBOs are strongly interacting with network modifying cations The effect of cation field strength on the degree of Al-avoidance was also discussed.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

Fates of water and salts in non-aqueous solvents for directional solvent extraction desalination: Effects of chemical structures of the solvents

  • Choi, Ohkyung;Kim, Minsup;Cho, Art E.;Choi, Young Chul;Kim, Gyu Dong;Kim, Dooil;Lee, Jae Woo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.207-212
    • /
    • 2019
  • Non-aqueous solvents (NASs) are generally known to be barely miscible, and reactive with polar compounds, such as water. However, water can interact with some NASs, which can be used as a new means for water recovery from saline water. This study explored the fate of water and salt in NAS, when saline water is mixed with NAS. Three amine solvents were selected as NAS. They had the same molecular formula, but were differentiated by their molecular structures, as follows: 1) NAS 'A' having the hydrophilic group ($NH_2$) at the end of the straight carbon chain, 2) NAS 'B' with symmetrical structure and having the hydrophilic group (NH) at the middle of the straight carbon chain, 3) NAS 'C' having the hydrophilic group ($NH_2$) at the end of the straight carbon chain but possessing a hydrophobic ethyl branch in the middle of the structure. In batch experiments, 0.5 M NaCl water was blended with NASs, and then water and salt content in the NAS were individually measured. Water absorption efficiencies by NAS 'B' and 'C' were 3.8 and 10.7%, respectively. However, salt rejection efficiency was 98.9% and 58.2%, respectively. NAS 'A' exhibited a higher water absorption efficiency of 35.6%, despite a worse salt rejection efficiency of 24.7%. Molecular dynamic (MD) simulation showed the different interactions of water and salts with each NAS. NAS 'A' formed lattice structured clusters, with the hydrophilic group located outside, and captured a large numbers of water molecules, together with salt ions, inside the cluster pockets. NAS 'B' formed a planar-shaped cluster, where only some water molecules, but no salt ions, migrated to the NAS cluster. NAS 'C', with an ethyl group branch, formed a cluster shaped similarly to that of 'B'; however, the boundary surface of the cluster looked higher than that of 'C', due to the branch structure in solvent. The MD simulation was helpful for understanding the experimental results for water absorption and salt rejection, by demonstrating the various interactions between water molecules and the salts, with the different NAS types.

Analysis of Shipping Markets Using VAR and VECM Models (VAR과 VECM 모형을 이용한 해운시장 분석)

  • Byoung-Wook Ko
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.69-88
    • /
    • 2023
  • This study analyzes the dynamic characteristics of cargo volume (demand), ship fleet (supply), and freight rate (price) of container, dry bulk, and tanker shipping markets by using the VAR and VECM models. This analysis is expected to enhance the statistical understanding of market dynamics, which is perceived by the actual experiences of market participants. The common statistical patterns, which are all shown in the three shipping markets, are as follows: 1) The Granger-causality test reveals that the past increase of fleet variable induces the present decrease of freight rate variable. 2) The impulse-response analysis shows that cargo shock increases the freight rate but fleet shock decreases the freight rate. 3) Among the three cargo, fleet, and freight rate shocks, the freight rate shock is overwhelmingly largest. 4) The comparison of adjR2 reveals that the fleet variable is most explained by the endogenous variables, i.e., cargo, fleet, and freight rate in each of shipping markets. 5) The estimation of co-integrating vectors shows that the increase of cargo increases the freight rate but the increase of fleet decreases the freight rate. 6) The estimation of adjustment speed demonstrates that the past-period positive deviation from the long-run equilibrium freight rate induces the decrease of present freight rate.