• Title/Summary/Keyword: E1 Nino

Search Result 23, Processing Time 0.022 seconds

Forecasting the Sea Surface Temperature in the Tropical Pacific by Neural Network Model (신경망 모델을 이용한 적도 태평양 표층 수온 예측)

  • Chang You-Soon;Lee Da-Un;Seo Jang-Won;Youn Yong-Hoon
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.268-275
    • /
    • 2005
  • One of the nonlinear statistical modelling, neural network method was applied to predict the Sea Surface Temperature Anomalies (SSTA) in the Nino regions, which represent El Nino indices. The data used as inputs in the training step of neural network model were the first seven empirical orthogonal functions in the tropical Pacific $(120^{\circ}\;E,\;20^{\circ}\;S-20^{\circ}\;N)$ obtained from the NCEP/NCAR reanalysis data. The period of 1951 to 1993 was adopted for the training of neural network model, and the period 1994 to 2003 for the forecasting validation. Forecasting results suggested that neural network models were resonable for SSTA forecasting until 9-month lead time. They also predicted greatly the development and decay of strong E1 Nino occurred in 1997-1998 years. Especially, Nino3 region appeared to be the best forecast region, while the forecast skills rapidly decreased since 9-month lead time. However, in the Nino1+2 region where they are relatively low by the influence of local effects, they did not decrease even after 9-month lead time.

Interannual variabilities of the East Asia precipitation associated with tropical and subtropical sea surface temperature (열대 및 아열대 SST에 관련된 동아시아 강우량의 경년 변동성)

  • Ha, Kyung-Ja
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.28-28
    • /
    • 1995
  • The aim of the present study is to investigate the interannual variabilities of the East Asia monsoon rainfall associated with the global sea surface temperature anomaly(SSTA). For this study, the summer rainfall(from June to August) over the twenty-eight period of 1961-1988 were analyzed with being divided by nine-subregions over East Asia including Korea, China and Japan. From the analysis of the principal modes explaining the interannual variation, the interannual variabilities of summer rainfalls in South Japan and Korea are larger than those of the other subregions of the East Asia. There is a strong negative correlation between the summer rainfalls of south China and Korea. In this study, the relationship between the summer monsoon of each subregion and SSTs of the tropical NINO regions, of western Pacific warm pool, and of the subtropical ocean were investigated. The longitudinal sections of the lagged cross correlations of the summer rainfal1 anomaly in (a) Korea and (b) south China, and the monthly SSTA in the equatorial(averaged from 65 to 6N) Pacific were analyzed. The negative maximum correlation pattems of Korea''s stammer rainfal1 and SSTs over the eastern Pacific is transfered to positive maximum conrlation over central Pacific region with a biennial periodicity. In South China, the significant positive correlations are found at -12 month lag over the eastern Pacific and maximum negative correlation at 16 month lag over the central Pacific with the quasi-biennial oscillation. But the correlation coefficient reverses completely to that in Korea. In order to investigate the most prevailing interannual variability of rainfall related to the favored SSTA region, the lagged cross correlations between East Asia rainfall and SSTs over the moO regions(NINO 1+2(0-105, 90W-80W), NINO 3(5N-5S, 150W-90W), NINO 4(5N-5S, 160E-l50W) and the western Pacific worm pool (5N-5S, 120E-l60E) were analyzed. Among the lagged cross-correlation cycles in NINO regions, the maximum correlations for the negative lagged months prevail in NINO 1+2 and NINO 3, and the cross correlations for the positive lagged months NINO 4. It is noteworthy that correlation between the western Pacific warm pool SSTA and the monsoon rainfall in Korea and South China have the maximum value at negative 4 month lag. The evolution of the correlation between the East Asia monsoon rainfall and SSTA is linked to the equatorial convective cluster and related to northward propagating situation, and raising the possibility that the East Asia monsoon precipitation may be more fundamentally related to the interaction of intraseasonal oscillations and the sub-regional characteristics including the surface boundary conditions and the behavior of climatological air mass.

Interannual variabilities of the East Asia precipitation associated with tropical and subtropical sea surface temperature (열대 및 아열대 SST에 관련된 동아시아 강우량의 경년 변동성)

  • 하경자
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.413-426
    • /
    • 1995
  • The aim of the present study is to investigate the interannual variabilities of the East Asia monsoon rainfall associated with the global sea surface temperature anomaly(SSTA). For this study, the summer rainfall(from June to August) over the twenty-eight period of 1961-1988 were analyzed with being divided by nine-subregions over East Asia including Korea, China and Japan. From the analysis of the principal modes explaining the interannual variation, the interannual variabilities of summer rainfalls in South Japan and Korea are larger than those of the other subregions of the East Asia. There is a strong negative correlation between the summer rainfalls of south China and Korea. In this study, the relationship between the summer monsoon of each subregion and SSTs of the tropical NINO regions, of western Pacific warm pool, and of the subtropical ocean were investigated. The longitudinal sections of the lagged cross correlations of the summer rainfal1 anomaly in (a) Korea and (b) south China, and the monthly SSTA in the equatorial(averaged from 65 to 6N) Pacific were analyzed. The negative maximum correlation pattems of Korea's stammer rainfal1 and SSTs over the eastern Pacific is transfered to positive maximum conrlation over central Pacific region with a biennial periodicity. In South China, the significant positive correlations are found at -12 month lag over the eastern Pacific and maximum negative correlation at 16 month lag over the central Pacific with the quasi-biennial oscillation. But the correlation coefficient reverses completely to that in Korea. In order to investigate the most prevailing interannual variability of rainfall related to the favored SSTA region, the lagged cross correlations between East Asia rainfall and SSTs over the moO regions(NINO 1+2(0-105, 90W-80W), NINO 3(5N-5S, 150W-90W), NINO 4(5N-5S, 160E-l50W) and the western Pacific worm pool (5N-5S, 120E-l60E) were analyzed. Among the lagged cross-correlation cycles in NINO regions, the maximum correlations for the negative lagged months prevail in NINO 1+2 and NINO 3, and the cross correlations for the positive lagged months NINO 4. It is noteworthy that correlation between the western Pacific warm pool SSTA and the monsoon rainfall in Korea and South China have the maximum value at negative 4 month lag. The evolution of the correlation between the East Asia monsoon rainfall and SSTA is linked to the equatorial convective cluster and related to northward propagating situation, and raising the possibility that the East Asia monsoon precipitation may be more fundamentally related to the interaction of intraseasonal oscillations and the sub-regional characteristics including the surface boundary conditions and the behavior of climatological air mass.

  • PDF

A Statistical Analysis for El Nino Phenomenon (엘니뇨현상에 대한 통계적분석)

  • 김해경
    • 한국해양학회지
    • /
    • v.27 no.1
    • /
    • pp.35-45
    • /
    • 1992
  • This paper is concerned with the development and application of a stochastic model for predicting E1 nino phenomenon. For this, first a general criterion for determining E1 nino phenomenon, including period and strength, which is based on partial sum of monthly sea surface temperatures (SST) anomalies, is proposed, Secondly, the annual fluctuations, periodicity and dependence of monthly mean of equatorial Pacific SST during the period 1951-1990 are analyzed. Based on these, time series nonlinear regression model for the prediction of SST have been derived. A statistical procedure for using the model to predict the SST have been derived. A statistical procedure for using the model to predict the SST level is also proposed.

  • PDF

Time Series Analysis of the Subsurface Oceanic Data and Prediction of the Sea Surface Temperature in the Tropical Pacific (적도 태평양 아표층 자료의 시계열 분석 및 표층 수온 예측)

  • Chang You-Soon;Lee Da-Un;Youn Yong-Hoon;Seo Jang-Won
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.706-713
    • /
    • 2005
  • Subsurface oceanic data (Z20; Depth of $20^{\circ}C$ isotherm and WWV; Warm Water Volume) from the tropical Pacific Ocean from 1980 to 2004 were utilized to examine upper ocean variations in relation to E1 Nino. Time series analysis using EOF, composite, and cross-correlation methods indicated that there are significant time delays between subsurface oceanic parameters and the Nino3.4 SST. It implied that Z20 and WWV would be more reliable predictors of El Nino events. Based on analyzed results, we also constructed neural network model to predict the Nino3.4 SST from 1996 to 2004. The forecasting skills for the model using WWV were statistically higher than that using the trade wind except for short range forecasting less than 3 months. This model greatly predicted SST than any other previous statistical model, especially at lead times of 5 to 8 months.

The Comparison of Two Strains of Fibrocapsa japonica (Raphidophyceae) in New Zealand and Japan

  • Cho Eun Seob;Rhodes Lesley L.;Kim Hak Gyoon
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.58-65
    • /
    • 1999
  • Fibrocapsa japonica (Raphidophyceae) is regarded as a harmful algal bloom organism in Japanese waters, where it has been linked to fish kills. Fibrocapsa is a common species in New Zealand coastal waters, particularly in the Hauraki Gulf, where it has regularly bloomed in the spring under E1 Nino climate conditions for the past six years. The New Zealand isolate had 1.4 times more total polyunsaturated acids than the Japanese isolate under the same growth conditions, suggesting that eicosapentaenoic acid in particular coold be used as a discriminating chemotaxonomic marker. The molecular probes tested showed no differential binding of the raphidophytes to lectins, but oligonucleotide probes targeted F. japonica ribosomal RNA bound specifically to both isolates. Neither strain was toxic in mouse or neuroblastoma bioassays. There is no evidence that the New Zealand F. japonica isolates investigated to date produce ichthyotoxins.

  • PDF

Teleconnection Analysis between Precipitation in Korea and Pacific Sea Surface Temperature (우리나라 강수량과 태평양 해수면 온도의 원격상관관계 분석)

  • Chu, Hyun-Jae;Kim, Tae-Woong;Lee, Jong-Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1953-1957
    • /
    • 2007
  • 전 세계적으로 지구 온난화 등의 영향으로 인해 이상기후의 발생이 증가하고 있는 추세에 있다. 특히 엘니뇨 현상은 세계적으로 발생하는 홍수, 가뭄 등과 같은 재해와 많은 관련이 있음이 연구를 통해 확인되었다. 이러한 엘니뇨 현상을 판단하기 위해서는 다양한 자료들이 사용되고 있으며, 그 중 관측 인자의 하나로서 태평양 해수면 온도 자료 (Pacific sea surface temperature)를 많이 사용하고 있다. 본 연구에서는 우리나라 강수량 자료와 태평양 해수면 온도의 원격상관 (Teleconnection) 관계를 분석하였다. 강수량 자료로는 우리나라 20개 기상관측소의 월강수량 자료를 사용하였으며, 태평양 해수면 온도 자료로는 Nino1+2 $(0-10^{\circ}S,\;90^{\circ}W-80^{\circ}W)$, Nino3 ($5^{\circ}N-5^{\circ}S$, $150^{\circ}W-90^{\circ}W)$, Nino4 ($5^{\circ}N-5^{\circ}S$, $160^{\circ}E-150^{\circ}W$) 그리고 Nino3.4 ($5^{\circ}N-5^{\circ}S$, $170^{\circ}W-120^{\circ}W$) 관측 지역의 해수면 온도 자료를 사용하였다. 우리나라 강수량의 경우 계절에 따라 큰 변동성을 보이고 있다. 따라서 자료의 계절적 영향을 파악하기 위해 봄 (3월, 4월, 5월), 여름 (6월, 7월, 8월), 가을 (9월, 10월, 11월) 그리고 겨울 (12월, 1월, 2월)의 4계절로 구분하여, 초과확률 등을 이용한 분석을 실시하였다. 분석 결과 Warm ENSO episode의 경우 강수량 증가와 유의한 상관관계를 나타냈으며, Cold ENSO episode의 경우 강수량 감소와 유의한 상관관계를 나타내었다. 이러한 분석 결과는 최근 들어 우리나라에 발생하고 있는 이상기후발생과 관련된 연구에 유용한 정보를 제공해 줄 수 있을 것으로 판단된다.

  • PDF

Characteristics of Long-term Variability of the Net Heat Flux on the Sea Surface in the East Asian Marginal Seas (동아시아 해역 해수면 순열속의 장기 변동 특성)

  • Lee, Seong-Wook;Na, Jung-Yul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.86-94
    • /
    • 2000
  • In order to extract the spatio-temporal characteristics of long-term variability of the net heat flux on the sea surface in the East Asian marginal seas, empirical orthogonal function (EOF) analysis was conducted using data set calculated every 12 hours interval during 1978-1995. Among the first three modes explaining 73% of the total variance, the first mode having high peak at 1 year period indicates high variability area around the Sandong Peninsula and central and northeastern part of the East Sea. In the second mode which has spatial distribution of dipole type at the north and south, the peaks appear at 3.6 year and 2.3 year cycles. Time coefficient of the second EOF is believed to have close relation with the E1 Nino and has out-of-phase variation with NINO3 SST. Lagged correlation between NINO3 SST and time coefficient of the second EOF indicates four month time delay in the NINO3 SST. In the third mode which has opposite sign at the east and west, the periodicity of 6-9 year cycle has relatively clear appearance compared to other two EOFs. Also, high heat loss exceeding 800 W/$m^{2}$ in winter time occured at the south part of the Sandong Peninsula and Vladivostok. It reveals more frequent occurrence of about two times at the Sandong Peninsula than Vladivostok. The event is concentrated in January at Vladivostok, but it occurs primarily in December and January at the Sandong Peninsula.

  • PDF

Impact of IODM and ENSO on the East Asian Monsoon: Simulations through NCAR Community Atmospheric Model (동아시아 몬순 지역에서 IODM과 ENSO의 영향 : NCAR Community Atmospheric Model을 이용한 모의 실험)

  • Oh J.-H.;Chaudhari H. S.;Kripalani R. H.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.240-249
    • /
    • 2005
  • The normal Indian Ocean is characterized by warmer waters over the eastern region and cooler waters over the western region. Changes in sea surface temperature (SST) over the western and eastern Indian Ocean give birth to a phenomenon now referred to as the Indian Ocean Dipole Mode (IODM). The positive phase of this mode is characterized by positive SST anomalies over the western Indian Ocean and negative anomalies over the southeastern Indian Ocean, while the negative phase is characterized by a reversed SST anomaly pattern. On the other hand, the normal Pacific Ocean has warm (cool) waters over the western (eastern) parts. Positive (negative) SST anomalies over the central/eastern (western) Pacific Ocean characterize the E1 Nino phenomenon. The reverse situation leads to the La Nina phenomenon. The coupled ocean-atmosphere phenomenon over the Pacific is referred to as the E1 Nino Southern Oscillation (ENSO) phenomenon. In this study the impact of IODM and ENSO on the East Asian monsoon variability has been studied using observational data and using the Community Atmospheric Model (CAM) of the National Center for Atmospheric Research (NCAR). Five sets of model experiments were performed with anomalous SST patterns associated with IODM/ENSO superimposed on the climatological SSTs. The empirical and dynamic approaches reveal that it takes about 3-4 seasons fur the peak IODM mode to influence the summer monsoon activity over East Asia. On the other hand, the impact of ENSO on the East Asian monsoon could occur simultaneously. Further, the negative (positive) phase of IODM and E1 Nino (La Nina) over the Pacific enhances (suppresses) monsoon activity over the Korea-Japan Sector. Alternatively, IODM appears to have no significant impact on monsoon variability over China. However, El Nino (La Nina) suppresses (enhances) monsoon activity over China. While the IODM appears to influence the North Pacific subtropical high, ENSO appears to influence the Aleutian low over the northwest Pacific. Thus, the moisture supply towards East Asia from the Pacific is determined by the strengthening/weakening of the subtropical high and the Aleutian low.

The Morphological and Growth Characteristics of Two Strains of Fibrocapsa japonica Isolated from New Zealand and Japan

  • Cho Eun Seob;Rhodes Lesley L.;Kim Hak Gyoon
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.17-24
    • /
    • 1999
  • The blooms caused by Fibrocapsa japonica have occurred regularly in New Zea1andean coastal waters, and no fish kills and economic impacts have been reported. However, Fibrocapsa japonica in Japan killed caged juvenile fish and has been regarded as a harmful micro algae. In this comparative study a New Zealand isolate was found to be morphologically similar to a Japanese isolate, although slightly larger on average than. Optimal temperatures for growth differed, with fastest growth rates occurring at $22-24^{\circ}C$ for the New Zealand strain and $16-22^{\circ}C$ for the Japanese strain, with a decrease in growth rate exhibited by the latter at $25^{\circ}C$. Both isolates had low salinity optima of 20-25 PSU, although they grew between 15 and 30 PSU. Growth declined significantly for both strains above 30 PSU.

  • PDF